from typing import Any, Dict, List, Optional import litellm from litellm import get_secret from litellm._logging import verbose_proxy_logger from litellm.proxy._types import CommonProxyErrors, LiteLLMPromptInjectionParams from litellm.proxy.utils import get_instance_fn blue_color_code = "\033[94m" reset_color_code = "\033[0m" def initialize_callbacks_on_proxy( # noqa: PLR0915 value: Any, premium_user: bool, config_file_path: str, litellm_settings: dict, callback_specific_params: dict = {}, ): from litellm.proxy.proxy_server import prisma_client verbose_proxy_logger.debug( f"{blue_color_code}initializing callbacks={value} on proxy{reset_color_code}" ) if isinstance(value, list): imported_list: List[Any] = [] for callback in value: # ["presidio", ] if ( isinstance(callback, str) and callback in litellm._known_custom_logger_compatible_callbacks ): imported_list.append(callback) elif isinstance(callback, str) and callback == "presidio": from litellm.proxy.guardrails.guardrail_hooks.presidio import ( _OPTIONAL_PresidioPIIMasking, ) presidio_logging_only: Optional[bool] = litellm_settings.get( "presidio_logging_only", None ) if presidio_logging_only is not None: presidio_logging_only = bool( presidio_logging_only ) # validate boolean given _presidio_params = {} if "presidio" in callback_specific_params and isinstance( callback_specific_params["presidio"], dict ): _presidio_params = callback_specific_params["presidio"] params: Dict[str, Any] = { "logging_only": presidio_logging_only, **_presidio_params, } pii_masking_object = _OPTIONAL_PresidioPIIMasking(**params) imported_list.append(pii_masking_object) elif isinstance(callback, str) and callback == "llamaguard_moderations": from enterprise.enterprise_hooks.llama_guard import ( _ENTERPRISE_LlamaGuard, ) if premium_user is not True: raise Exception( "Trying to use Llama Guard" + CommonProxyErrors.not_premium_user.value ) llama_guard_object = _ENTERPRISE_LlamaGuard() imported_list.append(llama_guard_object) elif isinstance(callback, str) and callback == "hide_secrets": from enterprise.enterprise_hooks.secret_detection import ( _ENTERPRISE_SecretDetection, ) if premium_user is not True: raise Exception( "Trying to use secret hiding" + CommonProxyErrors.not_premium_user.value ) _secret_detection_object = _ENTERPRISE_SecretDetection() imported_list.append(_secret_detection_object) elif isinstance(callback, str) and callback == "openai_moderations": from enterprise.enterprise_hooks.openai_moderation import ( _ENTERPRISE_OpenAI_Moderation, ) if premium_user is not True: raise Exception( "Trying to use OpenAI Moderations Check" + CommonProxyErrors.not_premium_user.value ) openai_moderations_object = _ENTERPRISE_OpenAI_Moderation() imported_list.append(openai_moderations_object) elif isinstance(callback, str) and callback == "lakera_prompt_injection": from litellm.proxy.guardrails.guardrail_hooks.lakera_ai import ( lakeraAI_Moderation, ) init_params = {} if "lakera_prompt_injection" in callback_specific_params: init_params = callback_specific_params["lakera_prompt_injection"] lakera_moderations_object = lakeraAI_Moderation(**init_params) imported_list.append(lakera_moderations_object) elif isinstance(callback, str) and callback == "aporia_prompt_injection": from litellm.proxy.guardrails.guardrail_hooks.aporia_ai import ( AporiaGuardrail, ) aporia_guardrail_object = AporiaGuardrail() imported_list.append(aporia_guardrail_object) elif isinstance(callback, str) and callback == "google_text_moderation": from enterprise.enterprise_hooks.google_text_moderation import ( _ENTERPRISE_GoogleTextModeration, ) if premium_user is not True: raise Exception( "Trying to use Google Text Moderation" + CommonProxyErrors.not_premium_user.value ) google_text_moderation_obj = _ENTERPRISE_GoogleTextModeration() imported_list.append(google_text_moderation_obj) elif isinstance(callback, str) and callback == "llmguard_moderations": from enterprise.enterprise_hooks.llm_guard import _ENTERPRISE_LLMGuard if premium_user is not True: raise Exception( "Trying to use Llm Guard" + CommonProxyErrors.not_premium_user.value ) llm_guard_moderation_obj = _ENTERPRISE_LLMGuard() imported_list.append(llm_guard_moderation_obj) elif isinstance(callback, str) and callback == "blocked_user_check": from enterprise.enterprise_hooks.blocked_user_list import ( _ENTERPRISE_BlockedUserList, ) if premium_user is not True: raise Exception( "Trying to use ENTERPRISE BlockedUser" + CommonProxyErrors.not_premium_user.value ) blocked_user_list = _ENTERPRISE_BlockedUserList( prisma_client=prisma_client ) imported_list.append(blocked_user_list) elif isinstance(callback, str) and callback == "banned_keywords": from enterprise.enterprise_hooks.banned_keywords import ( _ENTERPRISE_BannedKeywords, ) if premium_user is not True: raise Exception( "Trying to use ENTERPRISE BannedKeyword" + CommonProxyErrors.not_premium_user.value ) banned_keywords_obj = _ENTERPRISE_BannedKeywords() imported_list.append(banned_keywords_obj) elif isinstance(callback, str) and callback == "detect_prompt_injection": from litellm.proxy.hooks.prompt_injection_detection import ( _OPTIONAL_PromptInjectionDetection, ) prompt_injection_params = None if "prompt_injection_params" in litellm_settings: prompt_injection_params_in_config = litellm_settings[ "prompt_injection_params" ] prompt_injection_params = LiteLLMPromptInjectionParams( **prompt_injection_params_in_config ) prompt_injection_detection_obj = _OPTIONAL_PromptInjectionDetection( prompt_injection_params=prompt_injection_params, ) imported_list.append(prompt_injection_detection_obj) elif isinstance(callback, str) and callback == "batch_redis_requests": from litellm.proxy.hooks.batch_redis_get import ( _PROXY_BatchRedisRequests, ) batch_redis_obj = _PROXY_BatchRedisRequests() imported_list.append(batch_redis_obj) elif isinstance(callback, str) and callback == "azure_content_safety": from litellm.proxy.hooks.azure_content_safety import ( _PROXY_AzureContentSafety, ) azure_content_safety_params = litellm_settings[ "azure_content_safety_params" ] for k, v in azure_content_safety_params.items(): if ( v is not None and isinstance(v, str) and v.startswith("os.environ/") ): azure_content_safety_params[k] = get_secret(v) azure_content_safety_obj = _PROXY_AzureContentSafety( **azure_content_safety_params, ) imported_list.append(azure_content_safety_obj) else: verbose_proxy_logger.debug( f"{blue_color_code} attempting to import custom calback={callback} {reset_color_code}" ) imported_list.append( get_instance_fn( value=callback, config_file_path=config_file_path, ) ) if isinstance(litellm.callbacks, list): litellm.callbacks.extend(imported_list) else: litellm.callbacks = imported_list # type: ignore if "prometheus" in value: if premium_user is not True: verbose_proxy_logger.warning( f"Prometheus metrics are only available for premium users. {CommonProxyErrors.not_premium_user.value}" ) from litellm.proxy.proxy_server import app verbose_proxy_logger.debug("Starting Prometheus Metrics on /metrics") from prometheus_client import make_asgi_app # Add prometheus asgi middleware to route /metrics requests metrics_app = make_asgi_app() app.mount("/metrics", metrics_app) else: litellm.callbacks = [ get_instance_fn( value=value, config_file_path=config_file_path, ) ] verbose_proxy_logger.debug( f"{blue_color_code} Initialized Callbacks - {litellm.callbacks} {reset_color_code}" ) def get_model_group_from_litellm_kwargs(kwargs: dict) -> Optional[str]: _litellm_params = kwargs.get("litellm_params", None) or {} _metadata = _litellm_params.get("metadata", None) or {} _model_group = _metadata.get("model_group", None) if _model_group is not None: return _model_group return None def get_model_group_from_request_data(data: dict) -> Optional[str]: _metadata = data.get("metadata", None) or {} _model_group = _metadata.get("model_group", None) if _model_group is not None: return _model_group return None def get_remaining_tokens_and_requests_from_request_data(data: Dict) -> Dict[str, str]: """ Helper function to return x-litellm-key-remaining-tokens-{model_group} and x-litellm-key-remaining-requests-{model_group} Returns {} when api_key + model rpm/tpm limit is not set """ headers = {} _metadata = data.get("metadata", None) or {} model_group = get_model_group_from_request_data(data) # Remaining Requests remaining_requests_variable_name = f"litellm-key-remaining-requests-{model_group}" remaining_requests = _metadata.get(remaining_requests_variable_name, None) if remaining_requests: headers[f"x-litellm-key-remaining-requests-{model_group}"] = remaining_requests # Remaining Tokens remaining_tokens_variable_name = f"litellm-key-remaining-tokens-{model_group}" remaining_tokens = _metadata.get(remaining_tokens_variable_name, None) if remaining_tokens: headers[f"x-litellm-key-remaining-tokens-{model_group}"] = remaining_tokens return headers def get_logging_caching_headers(request_data: Dict) -> Optional[Dict]: _metadata = request_data.get("metadata", None) or {} headers = {} if "applied_guardrails" in _metadata: headers["x-litellm-applied-guardrails"] = ",".join( _metadata["applied_guardrails"] ) if "semantic-similarity" in _metadata: headers["x-litellm-semantic-similarity"] = str(_metadata["semantic-similarity"]) return headers def add_guardrail_to_applied_guardrails_header( request_data: Dict, guardrail_name: Optional[str] ): if guardrail_name is None: return _metadata = request_data.get("metadata", None) or {} if "applied_guardrails" in _metadata: _metadata["applied_guardrails"].append(guardrail_name) else: _metadata["applied_guardrails"] = [guardrail_name]