import json from typing import TYPE_CHECKING, Any from litellm.proxy._types import SpanAttributes if TYPE_CHECKING: from opentelemetry.trace import Span as _Span Span = _Span else: Span = Any class LangtraceAttributes: """ This class is used to save trace attributes to Langtrace's spans """ def set_langtrace_attributes(self, span: Span, kwargs, response_obj): """ This function is used to log the event to Langtrace """ vendor = kwargs.get("litellm_params").get("custom_llm_provider") optional_params = kwargs.get("optional_params", {}) options = {**kwargs, **optional_params} self.set_request_attributes(span, options, vendor) self.set_response_attributes(span, response_obj) self.set_usage_attributes(span, response_obj) def set_request_attributes(self, span: Span, kwargs, vendor): """ This function is used to get span attributes for the LLM request """ span_attributes = { "gen_ai.operation.name": "chat", "langtrace.service.name": vendor, SpanAttributes.LLM_REQUEST_MODEL.value: kwargs.get("model"), SpanAttributes.LLM_IS_STREAMING.value: kwargs.get("stream"), SpanAttributes.LLM_REQUEST_TEMPERATURE.value: kwargs.get("temperature"), SpanAttributes.LLM_TOP_K.value: kwargs.get("top_k"), SpanAttributes.LLM_REQUEST_TOP_P.value: kwargs.get("top_p"), SpanAttributes.LLM_USER.value: kwargs.get("user"), SpanAttributes.LLM_REQUEST_MAX_TOKENS.value: kwargs.get("max_tokens"), SpanAttributes.LLM_RESPONSE_STOP_REASON.value: kwargs.get("stop"), SpanAttributes.LLM_FREQUENCY_PENALTY.value: kwargs.get("frequency_penalty"), SpanAttributes.LLM_PRESENCE_PENALTY.value: kwargs.get("presence_penalty"), } prompts = kwargs.get("messages") if prompts: span.add_event( name="gen_ai.content.prompt", attributes={SpanAttributes.LLM_PROMPTS.value: json.dumps(prompts)}, ) self.set_span_attributes(span, span_attributes) def set_response_attributes(self, span: Span, response_obj): """ This function is used to get span attributes for the LLM response """ response_attributes = { "gen_ai.response_id": response_obj.get("id"), "gen_ai.system_fingerprint": response_obj.get("system_fingerprint"), SpanAttributes.LLM_RESPONSE_MODEL.value: response_obj.get("model"), } completions = [] for choice in response_obj.get("choices", []): role = choice.get("message").get("role") content = choice.get("message").get("content") completions.append({"role": role, "content": content}) span.add_event( name="gen_ai.content.completion", attributes={SpanAttributes.LLM_COMPLETIONS: json.dumps(completions)}, ) self.set_span_attributes(span, response_attributes) def set_usage_attributes(self, span: Span, response_obj): """ This function is used to get span attributes for the LLM usage """ usage = response_obj.get("usage") if usage: usage_attributes = { SpanAttributes.LLM_USAGE_PROMPT_TOKENS.value: usage.get( "prompt_tokens" ), SpanAttributes.LLM_USAGE_COMPLETION_TOKENS.value: usage.get( "completion_tokens" ), SpanAttributes.LLM_USAGE_TOTAL_TOKENS.value: usage.get("total_tokens"), } self.set_span_attributes(span, usage_attributes) def set_span_attributes(self, span: Span, attributes): """ This function is used to set span attributes """ for key, value in attributes.items(): if not value: continue span.set_attribute(key, value)