|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import asyncio |
|
import traceback |
|
from typing import Optional |
|
|
|
from fastapi import APIRouter, Depends, Request, Response |
|
|
|
import litellm |
|
from litellm._logging import verbose_proxy_logger |
|
from litellm.proxy._types import * |
|
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth |
|
from litellm.proxy.utils import handle_exception_on_proxy |
|
|
|
router = APIRouter() |
|
|
|
from litellm.types.llms.openai import LiteLLMFineTuningJobCreate |
|
|
|
fine_tuning_config = None |
|
|
|
|
|
def set_fine_tuning_config(config): |
|
if config is None: |
|
return |
|
|
|
global fine_tuning_config |
|
if not isinstance(config, list): |
|
raise ValueError("invalid fine_tuning config, expected a list is not a list") |
|
|
|
for element in config: |
|
if isinstance(element, dict): |
|
for key, value in element.items(): |
|
if isinstance(value, str) and value.startswith("os.environ/"): |
|
element[key] = litellm.get_secret(value) |
|
|
|
fine_tuning_config = config |
|
|
|
|
|
|
|
def get_fine_tuning_provider_config( |
|
custom_llm_provider: str, |
|
): |
|
global fine_tuning_config |
|
if fine_tuning_config is None: |
|
raise ValueError( |
|
"fine_tuning_config is not set, set it on your config.yaml file." |
|
) |
|
for setting in fine_tuning_config: |
|
if setting.get("custom_llm_provider") == custom_llm_provider: |
|
return setting |
|
return None |
|
|
|
|
|
@router.post( |
|
"/v1/fine_tuning/jobs", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["fine-tuning"], |
|
summary="✨ (Enterprise) Create Fine-Tuning Job", |
|
) |
|
@router.post( |
|
"/fine_tuning/jobs", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["fine-tuning"], |
|
summary="✨ (Enterprise) Create Fine-Tuning Job", |
|
) |
|
async def create_fine_tuning_job( |
|
request: Request, |
|
fastapi_response: Response, |
|
fine_tuning_request: LiteLLMFineTuningJobCreate, |
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), |
|
): |
|
""" |
|
Creates a fine-tuning job which begins the process of creating a new model from a given dataset. |
|
This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs |
|
|
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/fine-tuning/create |
|
|
|
Example Curl: |
|
``` |
|
curl http://localhost:4000/v1/fine_tuning/jobs \ |
|
-H "Content-Type: application/json" \ |
|
-H "Authorization: Bearer sk-1234" \ |
|
-d '{ |
|
"model": "gpt-3.5-turbo", |
|
"training_file": "file-abc123", |
|
"hyperparameters": { |
|
"n_epochs": 4 |
|
} |
|
}' |
|
``` |
|
""" |
|
from litellm.proxy.proxy_server import ( |
|
add_litellm_data_to_request, |
|
general_settings, |
|
get_custom_headers, |
|
premium_user, |
|
proxy_config, |
|
proxy_logging_obj, |
|
version, |
|
) |
|
|
|
data = fine_tuning_request.model_dump(exclude_none=True) |
|
try: |
|
if premium_user is not True: |
|
raise ValueError( |
|
f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}" |
|
) |
|
|
|
|
|
verbose_proxy_logger.debug( |
|
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), |
|
) |
|
|
|
|
|
data = await add_litellm_data_to_request( |
|
data=data, |
|
request=request, |
|
general_settings=general_settings, |
|
user_api_key_dict=user_api_key_dict, |
|
version=version, |
|
proxy_config=proxy_config, |
|
) |
|
|
|
|
|
llm_provider_config = get_fine_tuning_provider_config( |
|
custom_llm_provider=fine_tuning_request.custom_llm_provider, |
|
) |
|
|
|
|
|
if llm_provider_config is not None: |
|
data.update(llm_provider_config) |
|
|
|
response = await litellm.acreate_fine_tuning_job(**data) |
|
|
|
|
|
asyncio.create_task( |
|
proxy_logging_obj.update_request_status( |
|
litellm_call_id=data.get("litellm_call_id", ""), status="success" |
|
) |
|
) |
|
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {} |
|
model_id = hidden_params.get("model_id", None) or "" |
|
cache_key = hidden_params.get("cache_key", None) or "" |
|
api_base = hidden_params.get("api_base", None) or "" |
|
|
|
fastapi_response.headers.update( |
|
get_custom_headers( |
|
user_api_key_dict=user_api_key_dict, |
|
model_id=model_id, |
|
cache_key=cache_key, |
|
api_base=api_base, |
|
version=version, |
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), |
|
) |
|
) |
|
|
|
return response |
|
except Exception as e: |
|
await proxy_logging_obj.post_call_failure_hook( |
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data |
|
) |
|
verbose_proxy_logger.error( |
|
"litellm.proxy.proxy_server.create_fine_tuning_job(): Exception occurred - {}".format( |
|
str(e) |
|
) |
|
) |
|
verbose_proxy_logger.debug(traceback.format_exc()) |
|
raise handle_exception_on_proxy(e) |
|
|
|
|
|
@router.get( |
|
"/v1/fine_tuning/jobs/{fine_tuning_job_id:path}", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["fine-tuning"], |
|
summary="✨ (Enterprise) Retrieve Fine-Tuning Job", |
|
) |
|
@router.get( |
|
"/fine_tuning/jobs/{fine_tuning_job_id:path}", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["fine-tuning"], |
|
summary="✨ (Enterprise) Retrieve Fine-Tuning Job", |
|
) |
|
async def retrieve_fine_tuning_job( |
|
request: Request, |
|
fastapi_response: Response, |
|
fine_tuning_job_id: str, |
|
custom_llm_provider: Literal["openai", "azure"], |
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), |
|
): |
|
""" |
|
Retrieves a fine-tuning job. |
|
This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id} |
|
|
|
Supported Query Params: |
|
- `custom_llm_provider`: Name of the LiteLLM provider |
|
- `fine_tuning_job_id`: The ID of the fine-tuning job to retrieve. |
|
""" |
|
from litellm.proxy.proxy_server import ( |
|
add_litellm_data_to_request, |
|
general_settings, |
|
get_custom_headers, |
|
premium_user, |
|
proxy_config, |
|
proxy_logging_obj, |
|
version, |
|
) |
|
|
|
data: dict = {} |
|
try: |
|
if premium_user is not True: |
|
raise ValueError( |
|
f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}" |
|
) |
|
|
|
data = await add_litellm_data_to_request( |
|
data=data, |
|
request=request, |
|
general_settings=general_settings, |
|
user_api_key_dict=user_api_key_dict, |
|
version=version, |
|
proxy_config=proxy_config, |
|
) |
|
|
|
|
|
llm_provider_config = get_fine_tuning_provider_config( |
|
custom_llm_provider=custom_llm_provider |
|
) |
|
|
|
if llm_provider_config is not None: |
|
data.update(llm_provider_config) |
|
|
|
response = await litellm.aretrieve_fine_tuning_job( |
|
**data, |
|
fine_tuning_job_id=fine_tuning_job_id, |
|
) |
|
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {} |
|
model_id = hidden_params.get("model_id", None) or "" |
|
cache_key = hidden_params.get("cache_key", None) or "" |
|
api_base = hidden_params.get("api_base", None) or "" |
|
|
|
fastapi_response.headers.update( |
|
get_custom_headers( |
|
user_api_key_dict=user_api_key_dict, |
|
model_id=model_id, |
|
cache_key=cache_key, |
|
api_base=api_base, |
|
version=version, |
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), |
|
) |
|
) |
|
|
|
return response |
|
|
|
except Exception as e: |
|
await proxy_logging_obj.post_call_failure_hook( |
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data |
|
) |
|
verbose_proxy_logger.error( |
|
"litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format( |
|
str(e) |
|
) |
|
) |
|
verbose_proxy_logger.debug(traceback.format_exc()) |
|
raise handle_exception_on_proxy(e) |
|
|
|
|
|
@router.get( |
|
"/v1/fine_tuning/jobs", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["fine-tuning"], |
|
summary="✨ (Enterprise) List Fine-Tuning Jobs", |
|
) |
|
@router.get( |
|
"/fine_tuning/jobs", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["fine-tuning"], |
|
summary="✨ (Enterprise) List Fine-Tuning Jobs", |
|
) |
|
async def list_fine_tuning_jobs( |
|
request: Request, |
|
fastapi_response: Response, |
|
custom_llm_provider: Literal["openai", "azure"], |
|
after: Optional[str] = None, |
|
limit: Optional[int] = None, |
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), |
|
): |
|
""" |
|
Lists fine-tuning jobs for the organization. |
|
This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs |
|
|
|
Supported Query Params: |
|
- `custom_llm_provider`: Name of the LiteLLM provider |
|
- `after`: Identifier for the last job from the previous pagination request. |
|
- `limit`: Number of fine-tuning jobs to retrieve (default is 20). |
|
""" |
|
from litellm.proxy.proxy_server import ( |
|
add_litellm_data_to_request, |
|
general_settings, |
|
get_custom_headers, |
|
premium_user, |
|
proxy_config, |
|
proxy_logging_obj, |
|
version, |
|
) |
|
|
|
data: dict = {} |
|
try: |
|
if premium_user is not True: |
|
raise ValueError( |
|
f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}" |
|
) |
|
|
|
data = await add_litellm_data_to_request( |
|
data=data, |
|
request=request, |
|
general_settings=general_settings, |
|
user_api_key_dict=user_api_key_dict, |
|
version=version, |
|
proxy_config=proxy_config, |
|
) |
|
|
|
|
|
llm_provider_config = get_fine_tuning_provider_config( |
|
custom_llm_provider=custom_llm_provider |
|
) |
|
|
|
if llm_provider_config is not None: |
|
data.update(llm_provider_config) |
|
|
|
response = await litellm.alist_fine_tuning_jobs( |
|
**data, |
|
after=after, |
|
limit=limit, |
|
) |
|
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {} |
|
model_id = hidden_params.get("model_id", None) or "" |
|
cache_key = hidden_params.get("cache_key", None) or "" |
|
api_base = hidden_params.get("api_base", None) or "" |
|
|
|
fastapi_response.headers.update( |
|
get_custom_headers( |
|
user_api_key_dict=user_api_key_dict, |
|
model_id=model_id, |
|
cache_key=cache_key, |
|
api_base=api_base, |
|
version=version, |
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), |
|
) |
|
) |
|
|
|
return response |
|
|
|
except Exception as e: |
|
await proxy_logging_obj.post_call_failure_hook( |
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data |
|
) |
|
verbose_proxy_logger.error( |
|
"litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format( |
|
str(e) |
|
) |
|
) |
|
verbose_proxy_logger.debug(traceback.format_exc()) |
|
raise handle_exception_on_proxy(e) |
|
|
|
|
|
@router.post( |
|
"/v1/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["fine-tuning"], |
|
summary="✨ (Enterprise) Cancel Fine-Tuning Jobs", |
|
) |
|
@router.post( |
|
"/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["fine-tuning"], |
|
summary="✨ (Enterprise) Cancel Fine-Tuning Jobs", |
|
) |
|
async def cancel_fine_tuning_job( |
|
request: Request, |
|
fastapi_response: Response, |
|
fine_tuning_job_id: str, |
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), |
|
): |
|
""" |
|
Cancel a fine-tuning job. |
|
|
|
This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}/cancel |
|
|
|
Supported Query Params: |
|
- `custom_llm_provider`: Name of the LiteLLM provider |
|
- `fine_tuning_job_id`: The ID of the fine-tuning job to cancel. |
|
""" |
|
from litellm.proxy.proxy_server import ( |
|
add_litellm_data_to_request, |
|
general_settings, |
|
get_custom_headers, |
|
premium_user, |
|
proxy_config, |
|
proxy_logging_obj, |
|
version, |
|
) |
|
|
|
data: dict = {} |
|
try: |
|
if premium_user is not True: |
|
raise ValueError( |
|
f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}" |
|
) |
|
|
|
data = await add_litellm_data_to_request( |
|
data=data, |
|
request=request, |
|
general_settings=general_settings, |
|
user_api_key_dict=user_api_key_dict, |
|
version=version, |
|
proxy_config=proxy_config, |
|
) |
|
|
|
request_body = await request.json() |
|
|
|
custom_llm_provider = request_body.get("custom_llm_provider", None) |
|
|
|
|
|
llm_provider_config = get_fine_tuning_provider_config( |
|
custom_llm_provider=custom_llm_provider |
|
) |
|
|
|
if llm_provider_config is not None: |
|
data.update(llm_provider_config) |
|
|
|
response = await litellm.acancel_fine_tuning_job( |
|
**data, |
|
fine_tuning_job_id=fine_tuning_job_id, |
|
) |
|
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {} |
|
model_id = hidden_params.get("model_id", None) or "" |
|
cache_key = hidden_params.get("cache_key", None) or "" |
|
api_base = hidden_params.get("api_base", None) or "" |
|
|
|
fastapi_response.headers.update( |
|
get_custom_headers( |
|
user_api_key_dict=user_api_key_dict, |
|
model_id=model_id, |
|
cache_key=cache_key, |
|
api_base=api_base, |
|
version=version, |
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), |
|
) |
|
) |
|
|
|
return response |
|
|
|
except Exception as e: |
|
await proxy_logging_obj.post_call_failure_hook( |
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data |
|
) |
|
verbose_proxy_logger.error( |
|
"litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format( |
|
str(e) |
|
) |
|
) |
|
verbose_proxy_logger.debug(traceback.format_exc()) |
|
raise handle_exception_on_proxy(e) |
|
|