|
|
|
|
|
|
|
|
|
import asyncio |
|
|
|
|
|
from typing import Dict, Optional |
|
|
|
from fastapi import APIRouter, Depends, HTTPException, Path, Request, Response |
|
|
|
import litellm |
|
from litellm._logging import verbose_proxy_logger |
|
from litellm.batches.main import ( |
|
CancelBatchRequest, |
|
CreateBatchRequest, |
|
RetrieveBatchRequest, |
|
) |
|
from litellm.proxy._types import * |
|
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth |
|
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body |
|
from litellm.proxy.common_utils.openai_endpoint_utils import ( |
|
get_custom_llm_provider_from_request_body, |
|
) |
|
from litellm.proxy.openai_files_endpoints.files_endpoints import is_known_model |
|
from litellm.proxy.utils import handle_exception_on_proxy |
|
|
|
router = APIRouter() |
|
|
|
|
|
@router.post( |
|
"/{provider}/v1/batches", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
@router.post( |
|
"/v1/batches", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
@router.post( |
|
"/batches", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
async def create_batch( |
|
request: Request, |
|
fastapi_response: Response, |
|
provider: Optional[str] = None, |
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), |
|
): |
|
""" |
|
Create large batches of API requests for asynchronous processing. |
|
This is the equivalent of POST https://api.openai.com/v1/batch |
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch |
|
|
|
Example Curl |
|
``` |
|
curl http://localhost:4000/v1/batches \ |
|
-H "Authorization: Bearer sk-1234" \ |
|
-H "Content-Type: application/json" \ |
|
-d '{ |
|
"input_file_id": "file-abc123", |
|
"endpoint": "/v1/chat/completions", |
|
"completion_window": "24h" |
|
}' |
|
``` |
|
""" |
|
from litellm.proxy.proxy_server import ( |
|
add_litellm_data_to_request, |
|
general_settings, |
|
get_custom_headers, |
|
llm_router, |
|
proxy_config, |
|
proxy_logging_obj, |
|
version, |
|
) |
|
|
|
data: Dict = {} |
|
try: |
|
data = await _read_request_body(request=request) |
|
verbose_proxy_logger.debug( |
|
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), |
|
) |
|
|
|
|
|
data = await add_litellm_data_to_request( |
|
data=data, |
|
request=request, |
|
general_settings=general_settings, |
|
user_api_key_dict=user_api_key_dict, |
|
version=version, |
|
proxy_config=proxy_config, |
|
) |
|
|
|
|
|
router_model: Optional[str] = None |
|
is_router_model = False |
|
if litellm.enable_loadbalancing_on_batch_endpoints is True: |
|
router_model = data.get("model", None) |
|
is_router_model = is_known_model(model=router_model, llm_router=llm_router) |
|
|
|
custom_llm_provider = ( |
|
provider or data.pop("custom_llm_provider", None) or "openai" |
|
) |
|
_create_batch_data = CreateBatchRequest(**data) |
|
if ( |
|
litellm.enable_loadbalancing_on_batch_endpoints is True |
|
and is_router_model |
|
and router_model is not None |
|
): |
|
if llm_router is None: |
|
raise HTTPException( |
|
status_code=500, |
|
detail={ |
|
"error": "LLM Router not initialized. Ensure models added to proxy." |
|
}, |
|
) |
|
|
|
response = await llm_router.acreate_batch(**_create_batch_data) |
|
else: |
|
response = await litellm.acreate_batch( |
|
custom_llm_provider=custom_llm_provider, **_create_batch_data |
|
) |
|
|
|
|
|
asyncio.create_task( |
|
proxy_logging_obj.update_request_status( |
|
litellm_call_id=data.get("litellm_call_id", ""), status="success" |
|
) |
|
) |
|
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {} |
|
model_id = hidden_params.get("model_id", None) or "" |
|
cache_key = hidden_params.get("cache_key", None) or "" |
|
api_base = hidden_params.get("api_base", None) or "" |
|
|
|
fastapi_response.headers.update( |
|
get_custom_headers( |
|
user_api_key_dict=user_api_key_dict, |
|
model_id=model_id, |
|
cache_key=cache_key, |
|
api_base=api_base, |
|
version=version, |
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), |
|
request_data=data, |
|
) |
|
) |
|
|
|
return response |
|
except Exception as e: |
|
await proxy_logging_obj.post_call_failure_hook( |
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data |
|
) |
|
verbose_proxy_logger.exception( |
|
"litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format( |
|
str(e) |
|
) |
|
) |
|
raise handle_exception_on_proxy(e) |
|
|
|
|
|
@router.get( |
|
"/{provider}/v1/batches/{batch_id:path}", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
@router.get( |
|
"/v1/batches/{batch_id:path}", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
@router.get( |
|
"/batches/{batch_id:path}", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
async def retrieve_batch( |
|
request: Request, |
|
fastapi_response: Response, |
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), |
|
provider: Optional[str] = None, |
|
batch_id: str = Path( |
|
title="Batch ID to retrieve", description="The ID of the batch to retrieve" |
|
), |
|
): |
|
""" |
|
Retrieves a batch. |
|
This is the equivalent of GET https://api.openai.com/v1/batches/{batch_id} |
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/retrieve |
|
|
|
Example Curl |
|
``` |
|
curl http://localhost:4000/v1/batches/batch_abc123 \ |
|
-H "Authorization: Bearer sk-1234" \ |
|
-H "Content-Type: application/json" \ |
|
|
|
``` |
|
""" |
|
from litellm.proxy.proxy_server import ( |
|
get_custom_headers, |
|
llm_router, |
|
proxy_logging_obj, |
|
version, |
|
) |
|
|
|
data: Dict = {} |
|
try: |
|
|
|
_retrieve_batch_request = RetrieveBatchRequest( |
|
batch_id=batch_id, |
|
) |
|
|
|
if litellm.enable_loadbalancing_on_batch_endpoints is True: |
|
if llm_router is None: |
|
raise HTTPException( |
|
status_code=500, |
|
detail={ |
|
"error": "LLM Router not initialized. Ensure models added to proxy." |
|
}, |
|
) |
|
|
|
response = await llm_router.aretrieve_batch(**_retrieve_batch_request) |
|
else: |
|
custom_llm_provider = ( |
|
provider |
|
or await get_custom_llm_provider_from_request_body(request=request) |
|
or "openai" |
|
) |
|
response = await litellm.aretrieve_batch( |
|
custom_llm_provider=custom_llm_provider, **_retrieve_batch_request |
|
) |
|
|
|
|
|
asyncio.create_task( |
|
proxy_logging_obj.update_request_status( |
|
litellm_call_id=data.get("litellm_call_id", ""), status="success" |
|
) |
|
) |
|
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {} |
|
model_id = hidden_params.get("model_id", None) or "" |
|
cache_key = hidden_params.get("cache_key", None) or "" |
|
api_base = hidden_params.get("api_base", None) or "" |
|
|
|
fastapi_response.headers.update( |
|
get_custom_headers( |
|
user_api_key_dict=user_api_key_dict, |
|
model_id=model_id, |
|
cache_key=cache_key, |
|
api_base=api_base, |
|
version=version, |
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), |
|
request_data=data, |
|
) |
|
) |
|
|
|
return response |
|
except Exception as e: |
|
await proxy_logging_obj.post_call_failure_hook( |
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data |
|
) |
|
verbose_proxy_logger.exception( |
|
"litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format( |
|
str(e) |
|
) |
|
) |
|
raise handle_exception_on_proxy(e) |
|
|
|
|
|
@router.get( |
|
"/{provider}/v1/batches", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
@router.get( |
|
"/v1/batches", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
@router.get( |
|
"/batches", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
async def list_batches( |
|
request: Request, |
|
fastapi_response: Response, |
|
provider: Optional[str] = None, |
|
limit: Optional[int] = None, |
|
after: Optional[str] = None, |
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), |
|
): |
|
""" |
|
Lists |
|
This is the equivalent of GET https://api.openai.com/v1/batches/ |
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/list |
|
|
|
Example Curl |
|
``` |
|
curl http://localhost:4000/v1/batches?limit=2 \ |
|
-H "Authorization: Bearer sk-1234" \ |
|
-H "Content-Type: application/json" \ |
|
|
|
``` |
|
""" |
|
from litellm.proxy.proxy_server import ( |
|
get_custom_headers, |
|
proxy_logging_obj, |
|
version, |
|
) |
|
|
|
verbose_proxy_logger.debug("GET /v1/batches after={} limit={}".format(after, limit)) |
|
try: |
|
custom_llm_provider = ( |
|
provider |
|
or await get_custom_llm_provider_from_request_body(request=request) |
|
or "openai" |
|
) |
|
response = await litellm.alist_batches( |
|
custom_llm_provider=custom_llm_provider, |
|
after=after, |
|
limit=limit, |
|
) |
|
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {} |
|
model_id = hidden_params.get("model_id", None) or "" |
|
cache_key = hidden_params.get("cache_key", None) or "" |
|
api_base = hidden_params.get("api_base", None) or "" |
|
|
|
fastapi_response.headers.update( |
|
get_custom_headers( |
|
user_api_key_dict=user_api_key_dict, |
|
model_id=model_id, |
|
cache_key=cache_key, |
|
api_base=api_base, |
|
version=version, |
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), |
|
) |
|
) |
|
|
|
return response |
|
except Exception as e: |
|
await proxy_logging_obj.post_call_failure_hook( |
|
user_api_key_dict=user_api_key_dict, |
|
original_exception=e, |
|
request_data={"after": after, "limit": limit}, |
|
) |
|
verbose_proxy_logger.error( |
|
"litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format( |
|
str(e) |
|
) |
|
) |
|
raise handle_exception_on_proxy(e) |
|
|
|
|
|
@router.post( |
|
"/{provider}/v1/batches/{batch_id:path}/cancel", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
@router.post( |
|
"/v1/batches/{batch_id:path}/cancel", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
@router.post( |
|
"/batches/{batch_id:path}/cancel", |
|
dependencies=[Depends(user_api_key_auth)], |
|
tags=["batch"], |
|
) |
|
async def cancel_batch( |
|
request: Request, |
|
batch_id: str, |
|
fastapi_response: Response, |
|
provider: Optional[str] = None, |
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), |
|
): |
|
""" |
|
Cancel a batch. |
|
This is the equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel |
|
|
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/cancel |
|
|
|
Example Curl |
|
``` |
|
curl http://localhost:4000/v1/batches/batch_abc123/cancel \ |
|
-H "Authorization: Bearer sk-1234" \ |
|
-H "Content-Type: application/json" \ |
|
-X POST |
|
|
|
``` |
|
""" |
|
from litellm.proxy.proxy_server import ( |
|
add_litellm_data_to_request, |
|
general_settings, |
|
get_custom_headers, |
|
proxy_config, |
|
proxy_logging_obj, |
|
version, |
|
) |
|
|
|
data: Dict = {} |
|
try: |
|
data = await _read_request_body(request=request) |
|
verbose_proxy_logger.debug( |
|
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), |
|
) |
|
|
|
|
|
data = await add_litellm_data_to_request( |
|
data=data, |
|
request=request, |
|
general_settings=general_settings, |
|
user_api_key_dict=user_api_key_dict, |
|
version=version, |
|
proxy_config=proxy_config, |
|
) |
|
|
|
custom_llm_provider = ( |
|
provider or data.pop("custom_llm_provider", None) or "openai" |
|
) |
|
_cancel_batch_data = CancelBatchRequest(batch_id=batch_id, **data) |
|
response = await litellm.acancel_batch( |
|
custom_llm_provider=custom_llm_provider, |
|
**_cancel_batch_data |
|
) |
|
|
|
|
|
asyncio.create_task( |
|
proxy_logging_obj.update_request_status( |
|
litellm_call_id=data.get("litellm_call_id", ""), status="success" |
|
) |
|
) |
|
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {} |
|
model_id = hidden_params.get("model_id", None) or "" |
|
cache_key = hidden_params.get("cache_key", None) or "" |
|
api_base = hidden_params.get("api_base", None) or "" |
|
|
|
fastapi_response.headers.update( |
|
get_custom_headers( |
|
user_api_key_dict=user_api_key_dict, |
|
model_id=model_id, |
|
cache_key=cache_key, |
|
api_base=api_base, |
|
version=version, |
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), |
|
request_data=data, |
|
) |
|
) |
|
|
|
return response |
|
except Exception as e: |
|
await proxy_logging_obj.post_call_failure_hook( |
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data |
|
) |
|
verbose_proxy_logger.exception( |
|
"litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format( |
|
str(e) |
|
) |
|
) |
|
raise handle_exception_on_proxy(e) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|