Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
9.38 kB
import types
from typing import List, Literal, Optional, Union
from pydantic import BaseModel
from litellm.types.utils import EmbeddingResponse, Usage
from .types import *
class VertexAITextEmbeddingConfig(BaseModel):
"""
Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#TextEmbeddingInput
Args:
auto_truncate: Optional(bool) If True, will truncate input text to fit within the model's max input length.
task_type: Optional(str) The type of task to be performed. The default is "RETRIEVAL_QUERY".
title: Optional(str) The title of the document to be embedded. (only valid with task_type=RETRIEVAL_DOCUMENT).
"""
auto_truncate: Optional[bool] = None
task_type: Optional[
Literal[
"RETRIEVAL_QUERY",
"RETRIEVAL_DOCUMENT",
"SEMANTIC_SIMILARITY",
"CLASSIFICATION",
"CLUSTERING",
"QUESTION_ANSWERING",
"FACT_VERIFICATION",
]
] = None
title: Optional[str] = None
def __init__(
self,
auto_truncate: Optional[bool] = None,
task_type: Optional[
Literal[
"RETRIEVAL_QUERY",
"RETRIEVAL_DOCUMENT",
"SEMANTIC_SIMILARITY",
"CLASSIFICATION",
"CLUSTERING",
"QUESTION_ANSWERING",
"FACT_VERIFICATION",
]
] = None,
title: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return ["dimensions"]
def map_openai_params(
self, non_default_params: dict, optional_params: dict, kwargs: dict
):
for param, value in non_default_params.items():
if param == "dimensions":
optional_params["output_dimensionality"] = value
if "input_type" in kwargs:
optional_params["task_type"] = kwargs.pop("input_type")
return optional_params, kwargs
def get_mapped_special_auth_params(self) -> dict:
"""
Common auth params across bedrock/vertex_ai/azure/watsonx
"""
return {"project": "vertex_project", "region_name": "vertex_location"}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
mapped_params = self.get_mapped_special_auth_params()
for param, value in non_default_params.items():
if param in mapped_params:
optional_params[mapped_params[param]] = value
return optional_params
def transform_openai_request_to_vertex_embedding_request(
self, input: Union[list, str], optional_params: dict, model: str
) -> VertexEmbeddingRequest:
"""
Transforms an openai request to a vertex embedding request.
"""
if model.isdigit():
return self._transform_openai_request_to_fine_tuned_embedding_request(
input, optional_params, model
)
vertex_request: VertexEmbeddingRequest = VertexEmbeddingRequest()
vertex_text_embedding_input_list: List[TextEmbeddingInput] = []
task_type: Optional[TaskType] = optional_params.get("task_type")
title = optional_params.get("title")
if isinstance(input, str):
input = [input] # Convert single string to list for uniform processing
for text in input:
embedding_input = self.create_embedding_input(
content=text, task_type=task_type, title=title
)
vertex_text_embedding_input_list.append(embedding_input)
vertex_request["instances"] = vertex_text_embedding_input_list
vertex_request["parameters"] = EmbeddingParameters(**optional_params)
return vertex_request
def _transform_openai_request_to_fine_tuned_embedding_request(
self, input: Union[list, str], optional_params: dict, model: str
) -> VertexEmbeddingRequest:
"""
Transforms an openai request to a vertex fine-tuned embedding request.
Vertex Doc: https://console.cloud.google.com/vertex-ai/model-garden?hl=en&project=adroit-crow-413218&pageState=(%22galleryStateKey%22:(%22f%22:(%22g%22:%5B%5D,%22o%22:%5B%5D),%22s%22:%22%22))
Sample Request:
```json
{
"instances" : [
{
"inputs": "How would the Future of AI in 10 Years look?",
"parameters": {
"max_new_tokens": 128,
"temperature": 1.0,
"top_p": 0.9,
"top_k": 10
}
}
]
}
```
"""
vertex_request: VertexEmbeddingRequest = VertexEmbeddingRequest()
vertex_text_embedding_input_list: List[TextEmbeddingFineTunedInput] = []
if isinstance(input, str):
input = [input] # Convert single string to list for uniform processing
for text in input:
embedding_input = TextEmbeddingFineTunedInput(inputs=text)
vertex_text_embedding_input_list.append(embedding_input)
vertex_request["instances"] = vertex_text_embedding_input_list
vertex_request["parameters"] = TextEmbeddingFineTunedParameters(
**optional_params
)
return vertex_request
def create_embedding_input(
self,
content: str,
task_type: Optional[TaskType] = None,
title: Optional[str] = None,
) -> TextEmbeddingInput:
"""
Creates a TextEmbeddingInput object.
Vertex requires a List of TextEmbeddingInput objects. This helper function creates a single TextEmbeddingInput object.
Args:
content (str): The content to be embedded.
task_type (Optional[TaskType]): The type of task to be performed".
title (Optional[str]): The title of the document to be embedded
Returns:
TextEmbeddingInput: A TextEmbeddingInput object.
"""
text_embedding_input = TextEmbeddingInput(content=content)
if task_type is not None:
text_embedding_input["task_type"] = task_type
if title is not None:
text_embedding_input["title"] = title
return text_embedding_input
def transform_vertex_response_to_openai(
self, response: dict, model: str, model_response: EmbeddingResponse
) -> EmbeddingResponse:
"""
Transforms a vertex embedding response to an openai response.
"""
if model.isdigit():
return self._transform_vertex_response_to_openai_for_fine_tuned_models(
response, model, model_response
)
_predictions = response["predictions"]
embedding_response = []
input_tokens: int = 0
for idx, element in enumerate(_predictions):
embedding = element["embeddings"]
embedding_response.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding["values"],
}
)
input_tokens += embedding["statistics"]["token_count"]
model_response.object = "list"
model_response.data = embedding_response
model_response.model = model
usage = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
)
setattr(model_response, "usage", usage)
return model_response
def _transform_vertex_response_to_openai_for_fine_tuned_models(
self, response: dict, model: str, model_response: EmbeddingResponse
) -> EmbeddingResponse:
"""
Transforms a vertex fine-tuned model embedding response to an openai response format.
"""
_predictions = response["predictions"]
embedding_response = []
# For fine-tuned models, we don't get token counts in the response
input_tokens = 0
for idx, embedding_values in enumerate(_predictions):
embedding_response.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding_values[
0
], # The embedding values are nested one level deeper
}
)
model_response.object = "list"
model_response.data = embedding_response
model_response.model = model
usage = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
)
setattr(model_response, "usage", usage)
return model_response