TestLLM / litellm /llms /together_ai /cost_calculator.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
2.7 kB
"""
Handles calculating cost for together ai models
"""
import re
from litellm.types.utils import CallTypes
# Extract the number of billion parameters from the model name
# only used for together_computer LLMs
def get_model_params_and_category(model_name, call_type: CallTypes) -> str:
"""
Helper function for calculating together ai pricing.
Returns
- str - model pricing category if mapped else received model name
"""
if call_type == CallTypes.embedding or call_type == CallTypes.aembedding:
return get_model_params_and_category_embeddings(model_name=model_name)
model_name = model_name.lower()
re_params_match = re.search(
r"(\d+b)", model_name
) # catch all decimals like 3b, 70b, etc
category = None
if re_params_match is not None:
params_match = str(re_params_match.group(1))
params_match = params_match.replace("b", "")
if params_match is not None:
params_billion = float(params_match)
else:
return model_name
# Determine the category based on the number of parameters
if params_billion <= 4.0:
category = "together-ai-up-to-4b"
elif params_billion <= 8.0:
category = "together-ai-4.1b-8b"
elif params_billion <= 21.0:
category = "together-ai-8.1b-21b"
elif params_billion <= 41.0:
category = "together-ai-21.1b-41b"
elif params_billion <= 80.0:
category = "together-ai-41.1b-80b"
elif params_billion <= 110.0:
category = "together-ai-81.1b-110b"
if category is not None:
return category
return model_name
def get_model_params_and_category_embeddings(model_name) -> str:
"""
Helper function for calculating together ai embedding pricing.
Returns
- str - model pricing category if mapped else received model name
"""
model_name = model_name.lower()
re_params_match = re.search(
r"(\d+m)", model_name
) # catch all decimals like 100m, 200m, etc.
category = None
if re_params_match is not None:
params_match = str(re_params_match.group(1))
params_match = params_match.replace("m", "")
if params_match is not None:
params_million = float(params_match)
else:
return model_name
# Determine the category based on the number of parameters
if params_million <= 150:
category = "together-ai-embedding-up-to-150m"
elif params_million <= 350:
category = "together-ai-embedding-151m-to-350m"
if category is not None:
return category
return model_name