|
from typing import Any, List, Optional, Union |
|
|
|
from httpx import Headers, Response |
|
|
|
import litellm |
|
from litellm.llms.base_llm.chat.transformation import ( |
|
BaseConfig, |
|
BaseLLMException, |
|
LiteLLMLoggingObj, |
|
) |
|
from litellm.types.llms.openai import AllMessageValues |
|
from litellm.types.utils import ModelResponse |
|
|
|
from ..common_utils import PetalsError |
|
|
|
|
|
class PetalsConfig(BaseConfig): |
|
""" |
|
Reference: https://github.com/petals-infra/chat.petals.dev#post-apiv1generate |
|
The `PetalsConfig` class encapsulates the configuration for the Petals API. The properties of this class are described below: |
|
|
|
- `max_length` (integer): This represents the maximum length of the generated text (including the prefix) in tokens. |
|
|
|
- `max_new_tokens` (integer): This represents the maximum number of newly generated tokens (excluding the prefix). |
|
|
|
The generation parameters are compatible with `.generate()` from Hugging Face's Transformers library: |
|
|
|
- `do_sample` (boolean, optional): If set to 0 (default), the API runs greedy generation. If set to 1, the API performs sampling using the parameters below: |
|
|
|
- `temperature` (float, optional): This value sets the temperature for sampling. |
|
|
|
- `top_k` (integer, optional): This value sets the limit for top-k sampling. |
|
|
|
- `top_p` (float, optional): This value sets the limit for top-p (nucleus) sampling. |
|
|
|
- `repetition_penalty` (float, optional): This helps apply the repetition penalty during text generation, as discussed in this paper. |
|
""" |
|
|
|
max_length: Optional[int] = None |
|
max_new_tokens: Optional[int] = ( |
|
litellm.max_tokens |
|
) |
|
do_sample: Optional[bool] = None |
|
temperature: Optional[float] = None |
|
top_k: Optional[int] = None |
|
top_p: Optional[float] = None |
|
repetition_penalty: Optional[float] = None |
|
|
|
def __init__( |
|
self, |
|
max_length: Optional[int] = None, |
|
max_new_tokens: Optional[ |
|
int |
|
] = litellm.max_tokens, |
|
do_sample: Optional[bool] = None, |
|
temperature: Optional[float] = None, |
|
top_k: Optional[int] = None, |
|
top_p: Optional[float] = None, |
|
repetition_penalty: Optional[float] = None, |
|
) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return super().get_config() |
|
|
|
def get_error_class( |
|
self, error_message: str, status_code: int, headers: Union[dict, Headers] |
|
) -> BaseLLMException: |
|
return PetalsError( |
|
status_code=status_code, message=error_message, headers=headers |
|
) |
|
|
|
def get_supported_openai_params(self, model: str) -> List: |
|
return ["max_tokens", "temperature", "top_p", "stream"] |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: dict, |
|
optional_params: dict, |
|
model: str, |
|
drop_params: bool, |
|
) -> dict: |
|
for param, value in non_default_params.items(): |
|
if param == "max_tokens": |
|
optional_params["max_new_tokens"] = value |
|
if param == "temperature": |
|
optional_params["temperature"] = value |
|
if param == "top_p": |
|
optional_params["top_p"] = value |
|
if param == "stream": |
|
optional_params["stream"] = value |
|
return optional_params |
|
|
|
def transform_request( |
|
self, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
headers: dict, |
|
) -> dict: |
|
raise NotImplementedError( |
|
"Petals transformation currently done in handler.py. [TODO] Move to the transformation.py" |
|
) |
|
|
|
def transform_response( |
|
self, |
|
model: str, |
|
raw_response: Response, |
|
model_response: ModelResponse, |
|
logging_obj: LiteLLMLoggingObj, |
|
request_data: dict, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
encoding: Any, |
|
api_key: Optional[str] = None, |
|
json_mode: Optional[bool] = None, |
|
) -> ModelResponse: |
|
raise NotImplementedError( |
|
"Petals transformation currently done in handler.py. [TODO] Move to the transformation.py" |
|
) |
|
|
|
def validate_environment( |
|
self, |
|
headers: dict, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
api_key: Optional[str] = None, |
|
api_base: Optional[str] = None, |
|
) -> dict: |
|
return {} |
|
|