|
import time |
|
from typing import Callable, Optional, Union |
|
|
|
import litellm |
|
from litellm.litellm_core_utils.prompt_templates.factory import ( |
|
custom_prompt, |
|
prompt_factory, |
|
) |
|
from litellm.llms.custom_httpx.http_handler import ( |
|
AsyncHTTPHandler, |
|
HTTPHandler, |
|
_get_httpx_client, |
|
) |
|
from litellm.utils import ModelResponse, Usage |
|
|
|
from ..common_utils import PetalsError |
|
|
|
|
|
def completion( |
|
model: str, |
|
messages: list, |
|
api_base: Optional[str], |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
logging_obj, |
|
optional_params: dict, |
|
stream=False, |
|
litellm_params=None, |
|
logger_fn=None, |
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, |
|
): |
|
|
|
config = litellm.PetalsConfig.get_config() |
|
for k, v in config.items(): |
|
if ( |
|
k not in optional_params |
|
): |
|
optional_params[k] = v |
|
|
|
if model in litellm.custom_prompt_dict: |
|
|
|
model_prompt_details = litellm.custom_prompt_dict[model] |
|
prompt = custom_prompt( |
|
role_dict=model_prompt_details["roles"], |
|
initial_prompt_value=model_prompt_details["initial_prompt_value"], |
|
final_prompt_value=model_prompt_details["final_prompt_value"], |
|
messages=messages, |
|
) |
|
else: |
|
prompt = prompt_factory(model=model, messages=messages) |
|
|
|
output_text: Optional[str] = None |
|
if api_base: |
|
|
|
logging_obj.pre_call( |
|
input=prompt, |
|
api_key="", |
|
additional_args={ |
|
"complete_input_dict": optional_params, |
|
"api_base": api_base, |
|
}, |
|
) |
|
data = {"model": model, "inputs": prompt, **optional_params} |
|
|
|
|
|
if client is None or not isinstance(client, HTTPHandler): |
|
client = _get_httpx_client() |
|
response = client.post(api_base, data=data) |
|
|
|
|
|
logging_obj.post_call( |
|
input=prompt, |
|
api_key="", |
|
original_response=response.text, |
|
additional_args={"complete_input_dict": optional_params}, |
|
) |
|
|
|
|
|
try: |
|
output_text = response.json()["outputs"] |
|
except Exception as e: |
|
PetalsError( |
|
status_code=response.status_code, |
|
message=str(e), |
|
headers=response.headers, |
|
) |
|
|
|
else: |
|
try: |
|
from petals import AutoDistributedModelForCausalLM |
|
from transformers import AutoTokenizer |
|
except Exception: |
|
raise Exception( |
|
"Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals" |
|
) |
|
|
|
model = model |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model, use_fast=False, add_bos_token=False |
|
) |
|
model_obj = AutoDistributedModelForCausalLM.from_pretrained(model) |
|
|
|
|
|
logging_obj.pre_call( |
|
input=prompt, |
|
api_key="", |
|
additional_args={"complete_input_dict": optional_params}, |
|
) |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt")["input_ids"] |
|
|
|
|
|
outputs = model_obj.generate(inputs, **optional_params) |
|
|
|
|
|
logging_obj.post_call( |
|
input=prompt, |
|
api_key="", |
|
original_response=outputs, |
|
additional_args={"complete_input_dict": optional_params}, |
|
) |
|
|
|
output_text = tokenizer.decode(outputs[0]) |
|
|
|
if output_text is not None and len(output_text) > 0: |
|
model_response.choices[0].message.content = output_text |
|
|
|
prompt_tokens = len(encoding.encode(prompt)) |
|
completion_tokens = len( |
|
encoding.encode(model_response["choices"][0]["message"].get("content")) |
|
) |
|
|
|
model_response.created = int(time.time()) |
|
model_response.model = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens, |
|
) |
|
setattr(model_response, "usage", usage) |
|
return model_response |
|
|
|
|
|
def embedding(): |
|
|
|
pass |
|
|