|
""" |
|
OpenAI-like chat completion handler |
|
|
|
For handling OpenAI-like chat completions, like IBM WatsonX, etc. |
|
""" |
|
|
|
import json |
|
from typing import Any, Callable, Optional, Union |
|
|
|
import httpx |
|
|
|
import litellm |
|
from litellm import LlmProviders |
|
from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator |
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler |
|
from litellm.llms.databricks.streaming_utils import ModelResponseIterator |
|
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig |
|
from litellm.llms.openai.openai import OpenAIConfig |
|
from litellm.types.utils import CustomStreamingDecoder, ModelResponse |
|
from litellm.utils import CustomStreamWrapper, ProviderConfigManager |
|
|
|
from ..common_utils import OpenAILikeBase, OpenAILikeError |
|
from .transformation import OpenAILikeChatConfig |
|
|
|
|
|
async def make_call( |
|
client: Optional[AsyncHTTPHandler], |
|
api_base: str, |
|
headers: dict, |
|
data: str, |
|
model: str, |
|
messages: list, |
|
logging_obj, |
|
streaming_decoder: Optional[CustomStreamingDecoder] = None, |
|
fake_stream: bool = False, |
|
): |
|
if client is None: |
|
client = litellm.module_level_aclient |
|
|
|
response = await client.post( |
|
api_base, headers=headers, data=data, stream=not fake_stream |
|
) |
|
|
|
if streaming_decoder is not None: |
|
completion_stream: Any = streaming_decoder.aiter_bytes( |
|
response.aiter_bytes(chunk_size=1024) |
|
) |
|
elif fake_stream: |
|
model_response = ModelResponse(**response.json()) |
|
completion_stream = MockResponseIterator(model_response=model_response) |
|
else: |
|
completion_stream = ModelResponseIterator( |
|
streaming_response=response.aiter_lines(), sync_stream=False |
|
) |
|
|
|
logging_obj.post_call( |
|
input=messages, |
|
api_key="", |
|
original_response=completion_stream, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
return completion_stream |
|
|
|
|
|
def make_sync_call( |
|
client: Optional[HTTPHandler], |
|
api_base: str, |
|
headers: dict, |
|
data: str, |
|
model: str, |
|
messages: list, |
|
logging_obj, |
|
streaming_decoder: Optional[CustomStreamingDecoder] = None, |
|
fake_stream: bool = False, |
|
timeout: Optional[Union[float, httpx.Timeout]] = None, |
|
): |
|
if client is None: |
|
client = litellm.module_level_client |
|
|
|
response = client.post( |
|
api_base, headers=headers, data=data, stream=not fake_stream, timeout=timeout |
|
) |
|
|
|
if response.status_code != 200: |
|
raise OpenAILikeError(status_code=response.status_code, message=response.read()) |
|
|
|
if streaming_decoder is not None: |
|
completion_stream = streaming_decoder.iter_bytes( |
|
response.iter_bytes(chunk_size=1024) |
|
) |
|
elif fake_stream: |
|
model_response = ModelResponse(**response.json()) |
|
completion_stream = MockResponseIterator(model_response=model_response) |
|
else: |
|
completion_stream = ModelResponseIterator( |
|
streaming_response=response.iter_lines(), sync_stream=True |
|
) |
|
|
|
|
|
logging_obj.post_call( |
|
input=messages, |
|
api_key="", |
|
original_response="first stream response received", |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
return completion_stream |
|
|
|
|
|
class OpenAILikeChatHandler(OpenAILikeBase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
async def acompletion_stream_function( |
|
self, |
|
model: str, |
|
messages: list, |
|
custom_llm_provider: str, |
|
api_base: str, |
|
custom_prompt_dict: dict, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
stream, |
|
data: dict, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
headers={}, |
|
client: Optional[AsyncHTTPHandler] = None, |
|
streaming_decoder: Optional[CustomStreamingDecoder] = None, |
|
fake_stream: bool = False, |
|
) -> CustomStreamWrapper: |
|
data["stream"] = True |
|
completion_stream = await make_call( |
|
client=client, |
|
api_base=api_base, |
|
headers=headers, |
|
data=json.dumps(data), |
|
model=model, |
|
messages=messages, |
|
logging_obj=logging_obj, |
|
streaming_decoder=streaming_decoder, |
|
) |
|
streamwrapper = CustomStreamWrapper( |
|
completion_stream=completion_stream, |
|
model=model, |
|
custom_llm_provider=custom_llm_provider, |
|
logging_obj=logging_obj, |
|
) |
|
|
|
return streamwrapper |
|
|
|
async def acompletion_function( |
|
self, |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
custom_prompt_dict: dict, |
|
model_response: ModelResponse, |
|
custom_llm_provider: str, |
|
print_verbose: Callable, |
|
client: Optional[AsyncHTTPHandler], |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
stream, |
|
data: dict, |
|
base_model: Optional[str], |
|
optional_params: dict, |
|
litellm_params=None, |
|
logger_fn=None, |
|
headers={}, |
|
timeout: Optional[Union[float, httpx.Timeout]] = None, |
|
json_mode: bool = False, |
|
) -> ModelResponse: |
|
if timeout is None: |
|
timeout = httpx.Timeout(timeout=600.0, connect=5.0) |
|
|
|
if client is None: |
|
client = litellm.module_level_aclient |
|
|
|
try: |
|
response = await client.post( |
|
api_base, headers=headers, data=json.dumps(data), timeout=timeout |
|
) |
|
response.raise_for_status() |
|
except httpx.HTTPStatusError as e: |
|
raise OpenAILikeError( |
|
status_code=e.response.status_code, |
|
message=e.response.text, |
|
) |
|
except httpx.TimeoutException: |
|
raise OpenAILikeError(status_code=408, message="Timeout error occurred.") |
|
except Exception as e: |
|
raise OpenAILikeError(status_code=500, message=str(e)) |
|
|
|
return OpenAILikeChatConfig._transform_response( |
|
model=model, |
|
response=response, |
|
model_response=model_response, |
|
stream=stream, |
|
logging_obj=logging_obj, |
|
optional_params=optional_params, |
|
api_key=api_key, |
|
data=data, |
|
messages=messages, |
|
print_verbose=print_verbose, |
|
encoding=encoding, |
|
json_mode=json_mode, |
|
custom_llm_provider=custom_llm_provider, |
|
base_model=base_model, |
|
) |
|
|
|
def completion( |
|
self, |
|
*, |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
custom_llm_provider: str, |
|
custom_prompt_dict: dict, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key: Optional[str], |
|
logging_obj, |
|
optional_params: dict, |
|
acompletion=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
headers: Optional[dict] = None, |
|
timeout: Optional[Union[float, httpx.Timeout]] = None, |
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, |
|
custom_endpoint: Optional[bool] = None, |
|
streaming_decoder: Optional[ |
|
CustomStreamingDecoder |
|
] = None, |
|
fake_stream: bool = False, |
|
): |
|
custom_endpoint = custom_endpoint or optional_params.pop( |
|
"custom_endpoint", None |
|
) |
|
base_model: Optional[str] = optional_params.pop("base_model", None) |
|
api_base, headers = self._validate_environment( |
|
api_base=api_base, |
|
api_key=api_key, |
|
endpoint_type="chat_completions", |
|
custom_endpoint=custom_endpoint, |
|
headers=headers, |
|
) |
|
|
|
stream: bool = optional_params.pop("stream", None) or False |
|
extra_body = optional_params.pop("extra_body", {}) |
|
json_mode = optional_params.pop("json_mode", None) |
|
optional_params.pop("max_retries", None) |
|
if not fake_stream: |
|
optional_params["stream"] = stream |
|
|
|
if messages is not None and custom_llm_provider is not None: |
|
provider_config = ProviderConfigManager.get_provider_chat_config( |
|
model=model, provider=LlmProviders(custom_llm_provider) |
|
) |
|
if isinstance(provider_config, OpenAIGPTConfig) or isinstance( |
|
provider_config, OpenAIConfig |
|
): |
|
messages = provider_config._transform_messages( |
|
messages=messages, model=model |
|
) |
|
|
|
data = { |
|
"model": model, |
|
"messages": messages, |
|
**optional_params, |
|
**extra_body, |
|
} |
|
|
|
|
|
logging_obj.pre_call( |
|
input=messages, |
|
api_key=api_key, |
|
additional_args={ |
|
"complete_input_dict": data, |
|
"api_base": api_base, |
|
"headers": headers, |
|
}, |
|
) |
|
if acompletion is True: |
|
if client is None or not isinstance(client, AsyncHTTPHandler): |
|
client = None |
|
if ( |
|
stream is True |
|
): |
|
data["stream"] = stream |
|
return self.acompletion_stream_function( |
|
model=model, |
|
messages=messages, |
|
data=data, |
|
api_base=api_base, |
|
custom_prompt_dict=custom_prompt_dict, |
|
model_response=model_response, |
|
print_verbose=print_verbose, |
|
encoding=encoding, |
|
api_key=api_key, |
|
logging_obj=logging_obj, |
|
optional_params=optional_params, |
|
stream=stream, |
|
litellm_params=litellm_params, |
|
logger_fn=logger_fn, |
|
headers=headers, |
|
client=client, |
|
custom_llm_provider=custom_llm_provider, |
|
streaming_decoder=streaming_decoder, |
|
fake_stream=fake_stream, |
|
) |
|
else: |
|
return self.acompletion_function( |
|
model=model, |
|
messages=messages, |
|
data=data, |
|
api_base=api_base, |
|
custom_prompt_dict=custom_prompt_dict, |
|
custom_llm_provider=custom_llm_provider, |
|
model_response=model_response, |
|
print_verbose=print_verbose, |
|
encoding=encoding, |
|
api_key=api_key, |
|
logging_obj=logging_obj, |
|
optional_params=optional_params, |
|
stream=stream, |
|
litellm_params=litellm_params, |
|
logger_fn=logger_fn, |
|
headers=headers, |
|
timeout=timeout, |
|
base_model=base_model, |
|
client=client, |
|
json_mode=json_mode |
|
) |
|
else: |
|
|
|
if stream is True: |
|
completion_stream = make_sync_call( |
|
client=( |
|
client |
|
if client is not None and isinstance(client, HTTPHandler) |
|
else None |
|
), |
|
api_base=api_base, |
|
headers=headers, |
|
data=json.dumps(data), |
|
model=model, |
|
messages=messages, |
|
logging_obj=logging_obj, |
|
streaming_decoder=streaming_decoder, |
|
fake_stream=fake_stream, |
|
timeout=timeout, |
|
) |
|
|
|
return CustomStreamWrapper( |
|
completion_stream=completion_stream, |
|
model=model, |
|
custom_llm_provider=custom_llm_provider, |
|
logging_obj=logging_obj, |
|
) |
|
else: |
|
if client is None or not isinstance(client, HTTPHandler): |
|
client = HTTPHandler(timeout=timeout) |
|
try: |
|
response = client.post( |
|
url=api_base, headers=headers, data=json.dumps(data) |
|
) |
|
response.raise_for_status() |
|
|
|
except httpx.HTTPStatusError as e: |
|
raise OpenAILikeError( |
|
status_code=e.response.status_code, |
|
message=e.response.text, |
|
) |
|
except httpx.TimeoutException: |
|
raise OpenAILikeError( |
|
status_code=408, message="Timeout error occurred." |
|
) |
|
except Exception as e: |
|
raise OpenAILikeError(status_code=500, message=str(e)) |
|
return OpenAILikeChatConfig._transform_response( |
|
model=model, |
|
response=response, |
|
model_response=model_response, |
|
stream=stream, |
|
logging_obj=logging_obj, |
|
optional_params=optional_params, |
|
api_key=api_key, |
|
data=data, |
|
messages=messages, |
|
print_verbose=print_verbose, |
|
encoding=encoding, |
|
json_mode=json_mode, |
|
custom_llm_provider=custom_llm_provider, |
|
base_model=base_model, |
|
) |
|
|