|
""" |
|
Nvidia NIM embeddings endpoint: https://docs.api.nvidia.com/nim/reference/nvidia-nv-embedqa-e5-v5-infer |
|
|
|
This is OpenAI compatible |
|
|
|
This file only contains param mapping logic |
|
|
|
API calling is done using the OpenAI SDK with an api_base |
|
""" |
|
|
|
import types |
|
from typing import Optional |
|
|
|
|
|
class NvidiaNimEmbeddingConfig: |
|
""" |
|
Reference: https://docs.api.nvidia.com/nim/reference/nvidia-nv-embedqa-e5-v5-infer |
|
""" |
|
|
|
|
|
encoding_format: Optional[str] = None |
|
user: Optional[str] = None |
|
|
|
|
|
input_type: Optional[str] = None |
|
truncate: Optional[str] = None |
|
|
|
def __init__( |
|
self, |
|
encoding_format: Optional[str] = None, |
|
user: Optional[str] = None, |
|
input_type: Optional[str] = None, |
|
truncate: Optional[str] = None, |
|
) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return { |
|
k: v |
|
for k, v in cls.__dict__.items() |
|
if not k.startswith("__") |
|
and not isinstance( |
|
v, |
|
( |
|
types.FunctionType, |
|
types.BuiltinFunctionType, |
|
classmethod, |
|
staticmethod, |
|
), |
|
) |
|
and v is not None |
|
} |
|
|
|
def get_supported_openai_params( |
|
self, |
|
): |
|
return ["encoding_format", "user"] |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: dict, |
|
optional_params: dict, |
|
kwargs: Optional[dict] = None, |
|
): |
|
if "extra_body" not in optional_params: |
|
optional_params["extra_body"] = {} |
|
for k, v in non_default_params.items(): |
|
if k == "input_type": |
|
optional_params["extra_body"].update({"input_type": v}) |
|
elif k == "truncate": |
|
optional_params["extra_body"].update({"truncate": v}) |
|
|
|
if kwargs is not None: |
|
|
|
optional_params["extra_body"].update(kwargs) |
|
return optional_params |
|
|