Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
4.6 kB
"""
Nvidia NIM endpoint: https://docs.api.nvidia.com/nim/reference/databricks-dbrx-instruct-infer
This is OpenAI compatible
This file only contains param mapping logic
API calling is done using the OpenAI SDK with an api_base
"""
from typing import Optional, Union
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig
class NvidiaNimConfig(OpenAIGPTConfig):
"""
Reference: https://docs.api.nvidia.com/nim/reference/databricks-dbrx-instruct-infer
The class `NvidiaNimConfig` provides configuration for the Nvidia NIM's Chat Completions API interface. Below are the parameters:
"""
temperature: Optional[int] = None
top_p: Optional[int] = None
frequency_penalty: Optional[int] = None
presence_penalty: Optional[int] = None
max_tokens: Optional[int] = None
stop: Optional[Union[str, list]] = None
def __init__(
self,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
frequency_penalty: Optional[int] = None,
presence_penalty: Optional[int] = None,
max_tokens: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str) -> list:
"""
Get the supported OpenAI params for the given model
Updated on July 5th, 2024 - based on https://docs.api.nvidia.com/nim/reference
"""
if model in [
"google/recurrentgemma-2b",
"google/gemma-2-27b-it",
"google/gemma-2-9b-it",
"gemma-2-9b-it",
]:
return ["stream", "temperature", "top_p", "max_tokens", "stop", "seed"]
elif model == "nvidia/nemotron-4-340b-instruct":
return [
"stream",
"temperature",
"top_p",
"max_tokens",
"max_completion_tokens",
]
elif model == "nvidia/nemotron-4-340b-reward":
return [
"stream",
]
elif model in ["google/codegemma-1.1-7b"]:
# most params - but no 'seed' :(
return [
"stream",
"temperature",
"top_p",
"frequency_penalty",
"presence_penalty",
"max_tokens",
"max_completion_tokens",
"stop",
]
else:
# DEFAULT Case - The vast majority of Nvidia NIM Models lie here
# "upstage/solar-10.7b-instruct",
# "snowflake/arctic",
# "seallms/seallm-7b-v2.5",
# "nvidia/llama3-chatqa-1.5-8b",
# "nvidia/llama3-chatqa-1.5-70b",
# "mistralai/mistral-large",
# "mistralai/mixtral-8x22b-instruct-v0.1",
# "mistralai/mixtral-8x7b-instruct-v0.1",
# "mistralai/mistral-7b-instruct-v0.3",
# "mistralai/mistral-7b-instruct-v0.2",
# "mistralai/codestral-22b-instruct-v0.1",
# "microsoft/phi-3-small-8k-instruct",
# "microsoft/phi-3-small-128k-instruct",
# "microsoft/phi-3-mini-4k-instruct",
# "microsoft/phi-3-mini-128k-instruct",
# "microsoft/phi-3-medium-4k-instruct",
# "microsoft/phi-3-medium-128k-instruct",
# "meta/llama3-70b-instruct",
# "meta/llama3-8b-instruct",
# "meta/llama2-70b",
# "meta/codellama-70b",
return [
"stream",
"temperature",
"top_p",
"frequency_penalty",
"presence_penalty",
"max_tokens",
"max_completion_tokens",
"stop",
"seed",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
supported_openai_params = self.get_supported_openai_params(model=model)
for param, value in non_default_params.items():
if param == "max_completion_tokens":
optional_params["max_tokens"] = value
elif param in supported_openai_params:
optional_params[param] = value
return optional_params