|
|
|
import json |
|
import os |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Dict, |
|
List, |
|
Literal, |
|
Optional, |
|
Tuple, |
|
Union, |
|
cast, |
|
get_args, |
|
) |
|
|
|
import httpx |
|
|
|
import litellm |
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj |
|
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper |
|
from litellm.llms.custom_httpx.http_handler import ( |
|
AsyncHTTPHandler, |
|
HTTPHandler, |
|
_get_httpx_client, |
|
get_async_httpx_client, |
|
) |
|
from litellm.llms.huggingface.chat.transformation import ( |
|
HuggingfaceChatConfig as HuggingfaceConfig, |
|
) |
|
from litellm.types.llms.openai import AllMessageValues |
|
from litellm.types.utils import EmbeddingResponse |
|
from litellm.types.utils import Logprobs as TextCompletionLogprobs |
|
from litellm.types.utils import ModelResponse |
|
|
|
from ...base import BaseLLM |
|
from ..common_utils import HuggingfaceError |
|
|
|
hf_chat_config = HuggingfaceConfig() |
|
|
|
|
|
hf_tasks_embeddings = Literal[ |
|
"sentence-similarity", "feature-extraction", "rerank", "embed", "similarity" |
|
] |
|
|
|
|
|
def get_hf_task_embedding_for_model( |
|
model: str, task_type: Optional[str], api_base: str |
|
) -> Optional[str]: |
|
if task_type is not None: |
|
if task_type in get_args(hf_tasks_embeddings): |
|
return task_type |
|
else: |
|
raise Exception( |
|
"Invalid task_type={}. Expected one of={}".format( |
|
task_type, hf_tasks_embeddings |
|
) |
|
) |
|
http_client = HTTPHandler(concurrent_limit=1) |
|
|
|
model_info = http_client.get(url=api_base) |
|
|
|
model_info_dict = model_info.json() |
|
|
|
pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None) |
|
|
|
return pipeline_tag |
|
|
|
|
|
async def async_get_hf_task_embedding_for_model( |
|
model: str, task_type: Optional[str], api_base: str |
|
) -> Optional[str]: |
|
if task_type is not None: |
|
if task_type in get_args(hf_tasks_embeddings): |
|
return task_type |
|
else: |
|
raise Exception( |
|
"Invalid task_type={}. Expected one of={}".format( |
|
task_type, hf_tasks_embeddings |
|
) |
|
) |
|
http_client = get_async_httpx_client( |
|
llm_provider=litellm.LlmProviders.HUGGINGFACE, |
|
) |
|
|
|
model_info = await http_client.get(url=api_base) |
|
|
|
model_info_dict = model_info.json() |
|
|
|
pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None) |
|
|
|
return pipeline_tag |
|
|
|
|
|
async def make_call( |
|
client: Optional[AsyncHTTPHandler], |
|
api_base: str, |
|
headers: dict, |
|
data: str, |
|
model: str, |
|
messages: list, |
|
logging_obj, |
|
timeout: Optional[Union[float, httpx.Timeout]], |
|
json_mode: bool, |
|
) -> Tuple[Any, httpx.Headers]: |
|
if client is None: |
|
client = litellm.module_level_aclient |
|
|
|
try: |
|
response = await client.post( |
|
api_base, headers=headers, data=data, stream=True, timeout=timeout |
|
) |
|
except httpx.HTTPStatusError as e: |
|
error_headers = getattr(e, "headers", None) |
|
error_response = getattr(e, "response", None) |
|
if error_headers is None and error_response: |
|
error_headers = getattr(error_response, "headers", None) |
|
raise HuggingfaceError( |
|
status_code=e.response.status_code, |
|
message=str(await e.response.aread()), |
|
headers=cast(dict, error_headers) if error_headers else None, |
|
) |
|
except Exception as e: |
|
for exception in litellm.LITELLM_EXCEPTION_TYPES: |
|
if isinstance(e, exception): |
|
raise e |
|
raise HuggingfaceError(status_code=500, message=str(e)) |
|
|
|
|
|
logging_obj.post_call( |
|
input=messages, |
|
api_key="", |
|
original_response=response, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
return response.aiter_lines(), response.headers |
|
|
|
|
|
class Huggingface(BaseLLM): |
|
_client_session: Optional[httpx.Client] = None |
|
_aclient_session: Optional[httpx.AsyncClient] = None |
|
|
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
def completion( |
|
self, |
|
model: str, |
|
messages: list, |
|
api_base: Optional[str], |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
timeout: float, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
optional_params: dict, |
|
litellm_params: dict, |
|
custom_prompt_dict={}, |
|
acompletion: bool = False, |
|
logger_fn=None, |
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, |
|
headers: dict = {}, |
|
): |
|
super().completion() |
|
exception_mapping_worked = False |
|
try: |
|
task, model = hf_chat_config.get_hf_task_for_model(model) |
|
litellm_params["task"] = task |
|
headers = hf_chat_config.validate_environment( |
|
api_key=api_key, |
|
headers=headers, |
|
model=model, |
|
messages=messages, |
|
optional_params=optional_params, |
|
) |
|
completion_url = hf_chat_config.get_api_base(api_base=api_base, model=model) |
|
data = hf_chat_config.transform_request( |
|
model=model, |
|
messages=messages, |
|
optional_params=optional_params, |
|
litellm_params=litellm_params, |
|
headers=headers, |
|
) |
|
|
|
|
|
logging_obj.pre_call( |
|
input=data, |
|
api_key=api_key, |
|
additional_args={ |
|
"complete_input_dict": data, |
|
"headers": headers, |
|
"api_base": completion_url, |
|
"acompletion": acompletion, |
|
}, |
|
) |
|
|
|
|
|
if acompletion is True: |
|
|
|
if optional_params.get("stream", False): |
|
return self.async_streaming(logging_obj=logging_obj, api_base=completion_url, data=data, headers=headers, model_response=model_response, model=model, timeout=timeout, messages=messages) |
|
else: |
|
|
|
return self.acompletion( |
|
api_base=completion_url, |
|
data=data, |
|
headers=headers, |
|
model_response=model_response, |
|
encoding=encoding, |
|
model=model, |
|
optional_params=optional_params, |
|
timeout=timeout, |
|
litellm_params=litellm_params, |
|
logging_obj=logging_obj, |
|
api_key=api_key, |
|
messages=messages, |
|
client=( |
|
client |
|
if client is not None |
|
and isinstance(client, AsyncHTTPHandler) |
|
else None |
|
), |
|
) |
|
if client is None or not isinstance(client, HTTPHandler): |
|
client = _get_httpx_client() |
|
|
|
if "stream" in optional_params and optional_params["stream"] is True: |
|
response = client.post( |
|
url=completion_url, |
|
headers=headers, |
|
data=json.dumps(data), |
|
stream=optional_params["stream"], |
|
) |
|
return response.iter_lines() |
|
|
|
else: |
|
response = client.post( |
|
url=completion_url, |
|
headers=headers, |
|
data=json.dumps(data), |
|
) |
|
|
|
return hf_chat_config.transform_response( |
|
model=model, |
|
raw_response=response, |
|
model_response=model_response, |
|
logging_obj=logging_obj, |
|
api_key=api_key, |
|
request_data=data, |
|
messages=messages, |
|
optional_params=optional_params, |
|
encoding=encoding, |
|
json_mode=None, |
|
litellm_params=litellm_params, |
|
) |
|
except httpx.HTTPStatusError as e: |
|
raise HuggingfaceError( |
|
status_code=e.response.status_code, |
|
message=e.response.text, |
|
headers=e.response.headers, |
|
) |
|
except HuggingfaceError as e: |
|
exception_mapping_worked = True |
|
raise e |
|
except Exception as e: |
|
if exception_mapping_worked: |
|
raise e |
|
else: |
|
import traceback |
|
|
|
raise HuggingfaceError(status_code=500, message=traceback.format_exc()) |
|
|
|
async def acompletion( |
|
self, |
|
api_base: str, |
|
data: dict, |
|
headers: dict, |
|
model_response: ModelResponse, |
|
encoding: Any, |
|
model: str, |
|
optional_params: dict, |
|
litellm_params: dict, |
|
timeout: float, |
|
logging_obj: LiteLLMLoggingObj, |
|
api_key: str, |
|
messages: List[AllMessageValues], |
|
client: Optional[AsyncHTTPHandler] = None, |
|
): |
|
response: Optional[httpx.Response] = None |
|
try: |
|
if client is None: |
|
client = get_async_httpx_client( |
|
llm_provider=litellm.LlmProviders.HUGGINGFACE |
|
) |
|
|
|
http_response = await client.post( |
|
url=api_base, headers=headers, data=json.dumps(data), timeout=timeout |
|
) |
|
|
|
response = http_response |
|
|
|
return hf_chat_config.transform_response( |
|
model=model, |
|
raw_response=http_response, |
|
model_response=model_response, |
|
logging_obj=logging_obj, |
|
api_key=api_key, |
|
request_data=data, |
|
messages=messages, |
|
optional_params=optional_params, |
|
encoding=encoding, |
|
json_mode=None, |
|
litellm_params=litellm_params, |
|
) |
|
except Exception as e: |
|
if isinstance(e, httpx.TimeoutException): |
|
raise HuggingfaceError(status_code=500, message="Request Timeout Error") |
|
elif isinstance(e, HuggingfaceError): |
|
raise e |
|
elif response is not None and hasattr(response, "text"): |
|
raise HuggingfaceError( |
|
status_code=500, |
|
message=f"{str(e)}\n\nOriginal Response: {response.text}", |
|
headers=response.headers, |
|
) |
|
else: |
|
raise HuggingfaceError(status_code=500, message=f"{str(e)}") |
|
|
|
async def async_streaming( |
|
self, |
|
logging_obj, |
|
api_base: str, |
|
data: dict, |
|
headers: dict, |
|
model_response: ModelResponse, |
|
messages: List[AllMessageValues], |
|
model: str, |
|
timeout: float, |
|
client: Optional[AsyncHTTPHandler] = None, |
|
): |
|
completion_stream, _ = await make_call( |
|
client=client, |
|
api_base=api_base, |
|
headers=headers, |
|
data=json.dumps(data), |
|
model=model, |
|
messages=messages, |
|
logging_obj=logging_obj, |
|
timeout=timeout, |
|
json_mode=False, |
|
) |
|
streamwrapper = CustomStreamWrapper( |
|
completion_stream=completion_stream, |
|
model=model, |
|
custom_llm_provider="huggingface", |
|
logging_obj=logging_obj, |
|
) |
|
return streamwrapper |
|
|
|
def _transform_input_on_pipeline_tag( |
|
self, input: List, pipeline_tag: Optional[str] |
|
) -> dict: |
|
if pipeline_tag is None: |
|
return {"inputs": input} |
|
if pipeline_tag == "sentence-similarity" or pipeline_tag == "similarity": |
|
if len(input) < 2: |
|
raise HuggingfaceError( |
|
status_code=400, |
|
message="sentence-similarity requires 2+ sentences", |
|
) |
|
return {"inputs": {"source_sentence": input[0], "sentences": input[1:]}} |
|
elif pipeline_tag == "rerank": |
|
if len(input) < 2: |
|
raise HuggingfaceError( |
|
status_code=400, |
|
message="reranker requires 2+ sentences", |
|
) |
|
return {"inputs": {"query": input[0], "texts": input[1:]}} |
|
return {"inputs": input} |
|
|
|
async def _async_transform_input( |
|
self, |
|
model: str, |
|
task_type: Optional[str], |
|
embed_url: str, |
|
input: List, |
|
optional_params: dict, |
|
) -> dict: |
|
hf_task = await async_get_hf_task_embedding_for_model( |
|
model=model, task_type=task_type, api_base=embed_url |
|
) |
|
|
|
data = self._transform_input_on_pipeline_tag(input=input, pipeline_tag=hf_task) |
|
|
|
if len(optional_params.keys()) > 0: |
|
data["options"] = optional_params |
|
|
|
return data |
|
|
|
def _process_optional_params(self, data: dict, optional_params: dict) -> dict: |
|
special_options_keys = HuggingfaceConfig().get_special_options_params() |
|
special_parameters_keys = [ |
|
"min_length", |
|
"max_length", |
|
"top_k", |
|
"top_p", |
|
"temperature", |
|
"repetition_penalty", |
|
"max_time", |
|
] |
|
|
|
for k, v in optional_params.items(): |
|
if k in special_options_keys: |
|
data.setdefault("options", {}) |
|
data["options"][k] = v |
|
elif k in special_parameters_keys: |
|
data.setdefault("parameters", {}) |
|
data["parameters"][k] = v |
|
else: |
|
data[k] = v |
|
|
|
return data |
|
|
|
def _transform_input( |
|
self, |
|
input: List, |
|
model: str, |
|
call_type: Literal["sync", "async"], |
|
optional_params: dict, |
|
embed_url: str, |
|
) -> dict: |
|
data: Dict = {} |
|
|
|
|
|
if "sentence-transformers" in model: |
|
if len(input) == 0: |
|
raise HuggingfaceError( |
|
status_code=400, |
|
message="sentence transformers requires 2+ sentences", |
|
) |
|
data = {"inputs": {"source_sentence": input[0], "sentences": input[1:]}} |
|
else: |
|
data = {"inputs": input} |
|
|
|
task_type = optional_params.pop("input_type", None) |
|
|
|
if call_type == "sync": |
|
hf_task = get_hf_task_embedding_for_model( |
|
model=model, task_type=task_type, api_base=embed_url |
|
) |
|
elif call_type == "async": |
|
return self._async_transform_input( |
|
model=model, task_type=task_type, embed_url=embed_url, input=input |
|
) |
|
|
|
data = self._transform_input_on_pipeline_tag( |
|
input=input, pipeline_tag=hf_task |
|
) |
|
|
|
if len(optional_params.keys()) > 0: |
|
data = self._process_optional_params( |
|
data=data, optional_params=optional_params |
|
) |
|
|
|
return data |
|
|
|
def _process_embedding_response( |
|
self, |
|
embeddings: dict, |
|
model_response: EmbeddingResponse, |
|
model: str, |
|
input: List, |
|
encoding: Any, |
|
) -> EmbeddingResponse: |
|
output_data = [] |
|
if "similarities" in embeddings: |
|
for idx, embedding in embeddings["similarities"]: |
|
output_data.append( |
|
{ |
|
"object": "embedding", |
|
"index": idx, |
|
"embedding": embedding, |
|
} |
|
) |
|
else: |
|
for idx, embedding in enumerate(embeddings): |
|
if isinstance(embedding, float): |
|
output_data.append( |
|
{ |
|
"object": "embedding", |
|
"index": idx, |
|
"embedding": embedding, |
|
} |
|
) |
|
elif isinstance(embedding, list) and isinstance(embedding[0], float): |
|
output_data.append( |
|
{ |
|
"object": "embedding", |
|
"index": idx, |
|
"embedding": embedding, |
|
} |
|
) |
|
else: |
|
output_data.append( |
|
{ |
|
"object": "embedding", |
|
"index": idx, |
|
"embedding": embedding[0][ |
|
0 |
|
], |
|
} |
|
) |
|
model_response.object = "list" |
|
model_response.data = output_data |
|
model_response.model = model |
|
input_tokens = 0 |
|
for text in input: |
|
input_tokens += len(encoding.encode(text)) |
|
|
|
setattr( |
|
model_response, |
|
"usage", |
|
litellm.Usage( |
|
prompt_tokens=input_tokens, |
|
completion_tokens=input_tokens, |
|
total_tokens=input_tokens, |
|
prompt_tokens_details=None, |
|
completion_tokens_details=None, |
|
), |
|
) |
|
return model_response |
|
|
|
async def aembedding( |
|
self, |
|
model: str, |
|
input: list, |
|
model_response: litellm.utils.EmbeddingResponse, |
|
timeout: Union[float, httpx.Timeout], |
|
logging_obj: LiteLLMLoggingObj, |
|
optional_params: dict, |
|
api_base: str, |
|
api_key: Optional[str], |
|
headers: dict, |
|
encoding: Callable, |
|
client: Optional[AsyncHTTPHandler] = None, |
|
): |
|
|
|
data = self._transform_input( |
|
input=input, |
|
model=model, |
|
call_type="sync", |
|
optional_params=optional_params, |
|
embed_url=api_base, |
|
) |
|
|
|
|
|
logging_obj.pre_call( |
|
input=input, |
|
api_key=api_key, |
|
additional_args={ |
|
"complete_input_dict": data, |
|
"headers": headers, |
|
"api_base": api_base, |
|
}, |
|
) |
|
|
|
if client is None: |
|
client = get_async_httpx_client( |
|
llm_provider=litellm.LlmProviders.HUGGINGFACE, |
|
) |
|
|
|
response = await client.post(api_base, headers=headers, data=json.dumps(data)) |
|
|
|
|
|
logging_obj.post_call( |
|
input=input, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
original_response=response, |
|
) |
|
|
|
embeddings = response.json() |
|
|
|
if "error" in embeddings: |
|
raise HuggingfaceError(status_code=500, message=embeddings["error"]) |
|
|
|
|
|
return self._process_embedding_response( |
|
embeddings=embeddings, |
|
model_response=model_response, |
|
model=model, |
|
input=input, |
|
encoding=encoding, |
|
) |
|
|
|
def embedding( |
|
self, |
|
model: str, |
|
input: list, |
|
model_response: EmbeddingResponse, |
|
optional_params: dict, |
|
logging_obj: LiteLLMLoggingObj, |
|
encoding: Callable, |
|
api_key: Optional[str] = None, |
|
api_base: Optional[str] = None, |
|
timeout: Union[float, httpx.Timeout] = httpx.Timeout(None), |
|
aembedding: Optional[bool] = None, |
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, |
|
headers={}, |
|
) -> EmbeddingResponse: |
|
super().embedding() |
|
headers = hf_chat_config.validate_environment( |
|
api_key=api_key, |
|
headers=headers, |
|
model=model, |
|
optional_params=optional_params, |
|
messages=[], |
|
) |
|
|
|
embed_url = "" |
|
if "https" in model: |
|
embed_url = model |
|
elif api_base: |
|
embed_url = api_base |
|
elif "HF_API_BASE" in os.environ: |
|
embed_url = os.getenv("HF_API_BASE", "") |
|
elif "HUGGINGFACE_API_BASE" in os.environ: |
|
embed_url = os.getenv("HUGGINGFACE_API_BASE", "") |
|
else: |
|
embed_url = f"https://api-inference.huggingface.co/models/{model}" |
|
|
|
|
|
if aembedding is True: |
|
return self.aembedding( |
|
input=input, |
|
model_response=model_response, |
|
timeout=timeout, |
|
logging_obj=logging_obj, |
|
headers=headers, |
|
api_base=embed_url, |
|
api_key=api_key, |
|
client=client if isinstance(client, AsyncHTTPHandler) else None, |
|
model=model, |
|
optional_params=optional_params, |
|
encoding=encoding, |
|
) |
|
|
|
|
|
|
|
data = self._transform_input( |
|
input=input, |
|
model=model, |
|
call_type="sync", |
|
optional_params=optional_params, |
|
embed_url=embed_url, |
|
) |
|
|
|
|
|
logging_obj.pre_call( |
|
input=input, |
|
api_key=api_key, |
|
additional_args={ |
|
"complete_input_dict": data, |
|
"headers": headers, |
|
"api_base": embed_url, |
|
}, |
|
) |
|
|
|
if client is None or not isinstance(client, HTTPHandler): |
|
client = HTTPHandler(concurrent_limit=1) |
|
response = client.post(embed_url, headers=headers, data=json.dumps(data)) |
|
|
|
|
|
logging_obj.post_call( |
|
input=input, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
original_response=response, |
|
) |
|
|
|
embeddings = response.json() |
|
|
|
if "error" in embeddings: |
|
raise HuggingfaceError(status_code=500, message=embeddings["error"]) |
|
|
|
|
|
return self._process_embedding_response( |
|
embeddings=embeddings, |
|
model_response=model_response, |
|
model=model, |
|
input=input, |
|
encoding=encoding, |
|
) |
|
|
|
def _transform_logprobs( |
|
self, hf_response: Optional[List] |
|
) -> Optional[TextCompletionLogprobs]: |
|
""" |
|
Transform Hugging Face logprobs to OpenAI.Completion() format |
|
""" |
|
if hf_response is None: |
|
return None |
|
|
|
|
|
_logprob: TextCompletionLogprobs = TextCompletionLogprobs( |
|
text_offset=[], |
|
token_logprobs=[], |
|
tokens=[], |
|
top_logprobs=[], |
|
) |
|
|
|
|
|
for response in hf_response: |
|
|
|
response_details = response["details"] |
|
top_tokens = response_details.get("top_tokens", {}) |
|
|
|
for i, token in enumerate(response_details["prefill"]): |
|
|
|
token_text = token["text"] |
|
|
|
|
|
token_logprob = token["logprob"] |
|
|
|
|
|
cast(List[str], _logprob.tokens).append(token_text) |
|
cast(List[float], _logprob.token_logprobs).append(token_logprob) |
|
|
|
|
|
top_alt_tokens = {"": -1.0, "": -2.0, "": -3.0} |
|
cast(List[Dict[str, float]], _logprob.top_logprobs).append( |
|
top_alt_tokens |
|
) |
|
|
|
|
|
for i, token in enumerate(response_details["tokens"]): |
|
|
|
token_text = token["text"] |
|
|
|
|
|
token_logprob = token["logprob"] |
|
|
|
top_alt_tokens = {} |
|
temp_top_logprobs = [] |
|
if top_tokens != {}: |
|
temp_top_logprobs = top_tokens[i] |
|
|
|
|
|
for elem in temp_top_logprobs: |
|
text = elem["text"] |
|
logprob = elem["logprob"] |
|
top_alt_tokens[text] = logprob |
|
|
|
|
|
cast(List[str], _logprob.tokens).append(token_text) |
|
cast(List[float], _logprob.token_logprobs).append(token_logprob) |
|
cast(List[Dict[str, float]], _logprob.top_logprobs).append( |
|
top_alt_tokens |
|
) |
|
|
|
|
|
|
|
cast(List[int], _logprob.text_offset).append( |
|
sum(len(t["text"]) for t in response_details["tokens"][:i]) |
|
) |
|
|
|
return _logprob |
|
|