Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
26.1 kB
## Uses the huggingface text generation inference API
import json
import os
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Tuple,
Union,
cast,
get_args,
)
import httpx
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
_get_httpx_client,
get_async_httpx_client,
)
from litellm.llms.huggingface.chat.transformation import (
HuggingfaceChatConfig as HuggingfaceConfig,
)
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import EmbeddingResponse
from litellm.types.utils import Logprobs as TextCompletionLogprobs
from litellm.types.utils import ModelResponse
from ...base import BaseLLM
from ..common_utils import HuggingfaceError
hf_chat_config = HuggingfaceConfig()
hf_tasks_embeddings = Literal[ # pipeline tags + hf tei endpoints - https://huggingface.github.io/text-embeddings-inference/#/
"sentence-similarity", "feature-extraction", "rerank", "embed", "similarity"
]
def get_hf_task_embedding_for_model(
model: str, task_type: Optional[str], api_base: str
) -> Optional[str]:
if task_type is not None:
if task_type in get_args(hf_tasks_embeddings):
return task_type
else:
raise Exception(
"Invalid task_type={}. Expected one of={}".format(
task_type, hf_tasks_embeddings
)
)
http_client = HTTPHandler(concurrent_limit=1)
model_info = http_client.get(url=api_base)
model_info_dict = model_info.json()
pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)
return pipeline_tag
async def async_get_hf_task_embedding_for_model(
model: str, task_type: Optional[str], api_base: str
) -> Optional[str]:
if task_type is not None:
if task_type in get_args(hf_tasks_embeddings):
return task_type
else:
raise Exception(
"Invalid task_type={}. Expected one of={}".format(
task_type, hf_tasks_embeddings
)
)
http_client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.HUGGINGFACE,
)
model_info = await http_client.get(url=api_base)
model_info_dict = model_info.json()
pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)
return pipeline_tag
async def make_call(
client: Optional[AsyncHTTPHandler],
api_base: str,
headers: dict,
data: str,
model: str,
messages: list,
logging_obj,
timeout: Optional[Union[float, httpx.Timeout]],
json_mode: bool,
) -> Tuple[Any, httpx.Headers]:
if client is None:
client = litellm.module_level_aclient
try:
response = await client.post(
api_base, headers=headers, data=data, stream=True, timeout=timeout
)
except httpx.HTTPStatusError as e:
error_headers = getattr(e, "headers", None)
error_response = getattr(e, "response", None)
if error_headers is None and error_response:
error_headers = getattr(error_response, "headers", None)
raise HuggingfaceError(
status_code=e.response.status_code,
message=str(await e.response.aread()),
headers=cast(dict, error_headers) if error_headers else None,
)
except Exception as e:
for exception in litellm.LITELLM_EXCEPTION_TYPES:
if isinstance(e, exception):
raise e
raise HuggingfaceError(status_code=500, message=str(e))
# LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=response, # Pass the completion stream for logging
additional_args={"complete_input_dict": data},
)
return response.aiter_lines(), response.headers
class Huggingface(BaseLLM):
_client_session: Optional[httpx.Client] = None
_aclient_session: Optional[httpx.AsyncClient] = None
def __init__(self) -> None:
super().__init__()
def completion( # noqa: PLR0915
self,
model: str,
messages: list,
api_base: Optional[str],
model_response: ModelResponse,
print_verbose: Callable,
timeout: float,
encoding,
api_key,
logging_obj,
optional_params: dict,
litellm_params: dict,
custom_prompt_dict={},
acompletion: bool = False,
logger_fn=None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
headers: dict = {},
):
super().completion()
exception_mapping_worked = False
try:
task, model = hf_chat_config.get_hf_task_for_model(model)
litellm_params["task"] = task
headers = hf_chat_config.validate_environment(
api_key=api_key,
headers=headers,
model=model,
messages=messages,
optional_params=optional_params,
)
completion_url = hf_chat_config.get_api_base(api_base=api_base, model=model)
data = hf_chat_config.transform_request(
model=model,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
## LOGGING
logging_obj.pre_call(
input=data,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": headers,
"api_base": completion_url,
"acompletion": acompletion,
},
)
## COMPLETION CALL
if acompletion is True:
### ASYNC STREAMING
if optional_params.get("stream", False):
return self.async_streaming(logging_obj=logging_obj, api_base=completion_url, data=data, headers=headers, model_response=model_response, model=model, timeout=timeout, messages=messages) # type: ignore
else:
### ASYNC COMPLETION
return self.acompletion(
api_base=completion_url,
data=data,
headers=headers,
model_response=model_response,
encoding=encoding,
model=model,
optional_params=optional_params,
timeout=timeout,
litellm_params=litellm_params,
logging_obj=logging_obj,
api_key=api_key,
messages=messages,
client=(
client
if client is not None
and isinstance(client, AsyncHTTPHandler)
else None
),
)
if client is None or not isinstance(client, HTTPHandler):
client = _get_httpx_client()
### SYNC STREAMING
if "stream" in optional_params and optional_params["stream"] is True:
response = client.post(
url=completion_url,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"],
)
return response.iter_lines()
### SYNC COMPLETION
else:
response = client.post(
url=completion_url,
headers=headers,
data=json.dumps(data),
)
return hf_chat_config.transform_response(
model=model,
raw_response=response,
model_response=model_response,
logging_obj=logging_obj,
api_key=api_key,
request_data=data,
messages=messages,
optional_params=optional_params,
encoding=encoding,
json_mode=None,
litellm_params=litellm_params,
)
except httpx.HTTPStatusError as e:
raise HuggingfaceError(
status_code=e.response.status_code,
message=e.response.text,
headers=e.response.headers,
)
except HuggingfaceError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
raise e
else:
import traceback
raise HuggingfaceError(status_code=500, message=traceback.format_exc())
async def acompletion(
self,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
encoding: Any,
model: str,
optional_params: dict,
litellm_params: dict,
timeout: float,
logging_obj: LiteLLMLoggingObj,
api_key: str,
messages: List[AllMessageValues],
client: Optional[AsyncHTTPHandler] = None,
):
response: Optional[httpx.Response] = None
try:
if client is None:
client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.HUGGINGFACE
)
### ASYNC COMPLETION
http_response = await client.post(
url=api_base, headers=headers, data=json.dumps(data), timeout=timeout
)
response = http_response
return hf_chat_config.transform_response(
model=model,
raw_response=http_response,
model_response=model_response,
logging_obj=logging_obj,
api_key=api_key,
request_data=data,
messages=messages,
optional_params=optional_params,
encoding=encoding,
json_mode=None,
litellm_params=litellm_params,
)
except Exception as e:
if isinstance(e, httpx.TimeoutException):
raise HuggingfaceError(status_code=500, message="Request Timeout Error")
elif isinstance(e, HuggingfaceError):
raise e
elif response is not None and hasattr(response, "text"):
raise HuggingfaceError(
status_code=500,
message=f"{str(e)}\n\nOriginal Response: {response.text}",
headers=response.headers,
)
else:
raise HuggingfaceError(status_code=500, message=f"{str(e)}")
async def async_streaming(
self,
logging_obj,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
messages: List[AllMessageValues],
model: str,
timeout: float,
client: Optional[AsyncHTTPHandler] = None,
):
completion_stream, _ = await make_call(
client=client,
api_base=api_base,
headers=headers,
data=json.dumps(data),
model=model,
messages=messages,
logging_obj=logging_obj,
timeout=timeout,
json_mode=False,
)
streamwrapper = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="huggingface",
logging_obj=logging_obj,
)
return streamwrapper
def _transform_input_on_pipeline_tag(
self, input: List, pipeline_tag: Optional[str]
) -> dict:
if pipeline_tag is None:
return {"inputs": input}
if pipeline_tag == "sentence-similarity" or pipeline_tag == "similarity":
if len(input) < 2:
raise HuggingfaceError(
status_code=400,
message="sentence-similarity requires 2+ sentences",
)
return {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
elif pipeline_tag == "rerank":
if len(input) < 2:
raise HuggingfaceError(
status_code=400,
message="reranker requires 2+ sentences",
)
return {"inputs": {"query": input[0], "texts": input[1:]}}
return {"inputs": input} # default to feature-extraction pipeline tag
async def _async_transform_input(
self,
model: str,
task_type: Optional[str],
embed_url: str,
input: List,
optional_params: dict,
) -> dict:
hf_task = await async_get_hf_task_embedding_for_model(
model=model, task_type=task_type, api_base=embed_url
)
data = self._transform_input_on_pipeline_tag(input=input, pipeline_tag=hf_task)
if len(optional_params.keys()) > 0:
data["options"] = optional_params
return data
def _process_optional_params(self, data: dict, optional_params: dict) -> dict:
special_options_keys = HuggingfaceConfig().get_special_options_params()
special_parameters_keys = [
"min_length",
"max_length",
"top_k",
"top_p",
"temperature",
"repetition_penalty",
"max_time",
]
for k, v in optional_params.items():
if k in special_options_keys:
data.setdefault("options", {})
data["options"][k] = v
elif k in special_parameters_keys:
data.setdefault("parameters", {})
data["parameters"][k] = v
else:
data[k] = v
return data
def _transform_input(
self,
input: List,
model: str,
call_type: Literal["sync", "async"],
optional_params: dict,
embed_url: str,
) -> dict:
data: Dict = {}
## TRANSFORMATION ##
if "sentence-transformers" in model:
if len(input) == 0:
raise HuggingfaceError(
status_code=400,
message="sentence transformers requires 2+ sentences",
)
data = {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
else:
data = {"inputs": input}
task_type = optional_params.pop("input_type", None)
if call_type == "sync":
hf_task = get_hf_task_embedding_for_model(
model=model, task_type=task_type, api_base=embed_url
)
elif call_type == "async":
return self._async_transform_input(
model=model, task_type=task_type, embed_url=embed_url, input=input
) # type: ignore
data = self._transform_input_on_pipeline_tag(
input=input, pipeline_tag=hf_task
)
if len(optional_params.keys()) > 0:
data = self._process_optional_params(
data=data, optional_params=optional_params
)
return data
def _process_embedding_response(
self,
embeddings: dict,
model_response: EmbeddingResponse,
model: str,
input: List,
encoding: Any,
) -> EmbeddingResponse:
output_data = []
if "similarities" in embeddings:
for idx, embedding in embeddings["similarities"]:
output_data.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding, # flatten list returned from hf
}
)
else:
for idx, embedding in enumerate(embeddings):
if isinstance(embedding, float):
output_data.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding, # flatten list returned from hf
}
)
elif isinstance(embedding, list) and isinstance(embedding[0], float):
output_data.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding, # flatten list returned from hf
}
)
else:
output_data.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding[0][
0
], # flatten list returned from hf
}
)
model_response.object = "list"
model_response.data = output_data
model_response.model = model
input_tokens = 0
for text in input:
input_tokens += len(encoding.encode(text))
setattr(
model_response,
"usage",
litellm.Usage(
prompt_tokens=input_tokens,
completion_tokens=input_tokens,
total_tokens=input_tokens,
prompt_tokens_details=None,
completion_tokens_details=None,
),
)
return model_response
async def aembedding(
self,
model: str,
input: list,
model_response: litellm.utils.EmbeddingResponse,
timeout: Union[float, httpx.Timeout],
logging_obj: LiteLLMLoggingObj,
optional_params: dict,
api_base: str,
api_key: Optional[str],
headers: dict,
encoding: Callable,
client: Optional[AsyncHTTPHandler] = None,
):
## TRANSFORMATION ##
data = self._transform_input(
input=input,
model=model,
call_type="sync",
optional_params=optional_params,
embed_url=api_base,
)
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": headers,
"api_base": api_base,
},
)
## COMPLETION CALL
if client is None:
client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.HUGGINGFACE,
)
response = await client.post(api_base, headers=headers, data=json.dumps(data))
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response,
)
embeddings = response.json()
if "error" in embeddings:
raise HuggingfaceError(status_code=500, message=embeddings["error"])
## PROCESS RESPONSE ##
return self._process_embedding_response(
embeddings=embeddings,
model_response=model_response,
model=model,
input=input,
encoding=encoding,
)
def embedding(
self,
model: str,
input: list,
model_response: EmbeddingResponse,
optional_params: dict,
logging_obj: LiteLLMLoggingObj,
encoding: Callable,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
timeout: Union[float, httpx.Timeout] = httpx.Timeout(None),
aembedding: Optional[bool] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
headers={},
) -> EmbeddingResponse:
super().embedding()
headers = hf_chat_config.validate_environment(
api_key=api_key,
headers=headers,
model=model,
optional_params=optional_params,
messages=[],
)
# print_verbose(f"{model}, {task}")
embed_url = ""
if "https" in model:
embed_url = model
elif api_base:
embed_url = api_base
elif "HF_API_BASE" in os.environ:
embed_url = os.getenv("HF_API_BASE", "")
elif "HUGGINGFACE_API_BASE" in os.environ:
embed_url = os.getenv("HUGGINGFACE_API_BASE", "")
else:
embed_url = f"https://api-inference.huggingface.co/models/{model}"
## ROUTING ##
if aembedding is True:
return self.aembedding(
input=input,
model_response=model_response,
timeout=timeout,
logging_obj=logging_obj,
headers=headers,
api_base=embed_url, # type: ignore
api_key=api_key,
client=client if isinstance(client, AsyncHTTPHandler) else None,
model=model,
optional_params=optional_params,
encoding=encoding,
)
## TRANSFORMATION ##
data = self._transform_input(
input=input,
model=model,
call_type="sync",
optional_params=optional_params,
embed_url=embed_url,
)
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": headers,
"api_base": embed_url,
},
)
## COMPLETION CALL
if client is None or not isinstance(client, HTTPHandler):
client = HTTPHandler(concurrent_limit=1)
response = client.post(embed_url, headers=headers, data=json.dumps(data))
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response,
)
embeddings = response.json()
if "error" in embeddings:
raise HuggingfaceError(status_code=500, message=embeddings["error"])
## PROCESS RESPONSE ##
return self._process_embedding_response(
embeddings=embeddings,
model_response=model_response,
model=model,
input=input,
encoding=encoding,
)
def _transform_logprobs(
self, hf_response: Optional[List]
) -> Optional[TextCompletionLogprobs]:
"""
Transform Hugging Face logprobs to OpenAI.Completion() format
"""
if hf_response is None:
return None
# Initialize an empty list for the transformed logprobs
_logprob: TextCompletionLogprobs = TextCompletionLogprobs(
text_offset=[],
token_logprobs=[],
tokens=[],
top_logprobs=[],
)
# For each Hugging Face response, transform the logprobs
for response in hf_response:
# Extract the relevant information from the response
response_details = response["details"]
top_tokens = response_details.get("top_tokens", {})
for i, token in enumerate(response_details["prefill"]):
# Extract the text of the token
token_text = token["text"]
# Extract the logprob of the token
token_logprob = token["logprob"]
# Add the token information to the 'token_info' list
cast(List[str], _logprob.tokens).append(token_text)
cast(List[float], _logprob.token_logprobs).append(token_logprob)
# stub this to work with llm eval harness
top_alt_tokens = {"": -1.0, "": -2.0, "": -3.0} # noqa: F601
cast(List[Dict[str, float]], _logprob.top_logprobs).append(
top_alt_tokens
)
# For each element in the 'tokens' list, extract the relevant information
for i, token in enumerate(response_details["tokens"]):
# Extract the text of the token
token_text = token["text"]
# Extract the logprob of the token
token_logprob = token["logprob"]
top_alt_tokens = {}
temp_top_logprobs = []
if top_tokens != {}:
temp_top_logprobs = top_tokens[i]
# top_alt_tokens should look like this: { "alternative_1": -1, "alternative_2": -2, "alternative_3": -3 }
for elem in temp_top_logprobs:
text = elem["text"]
logprob = elem["logprob"]
top_alt_tokens[text] = logprob
# Add the token information to the 'token_info' list
cast(List[str], _logprob.tokens).append(token_text)
cast(List[float], _logprob.token_logprobs).append(token_logprob)
cast(List[Dict[str, float]], _logprob.top_logprobs).append(
top_alt_tokens
)
# Add the text offset of the token
# This is computed as the sum of the lengths of all previous tokens
cast(List[int], _logprob.text_offset).append(
sum(len(t["text"]) for t in response_details["tokens"][:i])
)
return _logprob