|
import json |
|
from typing import Optional |
|
|
|
import litellm |
|
from litellm.llms.openai.completion.transformation import OpenAITextCompletionConfig |
|
from litellm.types.llms.databricks import GenericStreamingChunk |
|
|
|
|
|
class CodestralTextCompletionConfig(OpenAITextCompletionConfig): |
|
""" |
|
Reference: https://docs.mistral.ai/api/#operation/createFIMCompletion |
|
""" |
|
|
|
suffix: Optional[str] = None |
|
temperature: Optional[int] = None |
|
max_tokens: Optional[int] = None |
|
min_tokens: Optional[int] = None |
|
stream: Optional[bool] = None |
|
random_seed: Optional[int] = None |
|
|
|
def __init__( |
|
self, |
|
suffix: Optional[str] = None, |
|
temperature: Optional[int] = None, |
|
top_p: Optional[float] = None, |
|
max_tokens: Optional[int] = None, |
|
min_tokens: Optional[int] = None, |
|
stream: Optional[bool] = None, |
|
random_seed: Optional[int] = None, |
|
stop: Optional[str] = None, |
|
) -> None: |
|
locals_ = locals().copy() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return super().get_config() |
|
|
|
def get_supported_openai_params(self, model: str): |
|
return [ |
|
"suffix", |
|
"temperature", |
|
"top_p", |
|
"max_tokens", |
|
"max_completion_tokens", |
|
"stream", |
|
"seed", |
|
"stop", |
|
] |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: dict, |
|
optional_params: dict, |
|
model: str, |
|
drop_params: bool, |
|
) -> dict: |
|
for param, value in non_default_params.items(): |
|
if param == "suffix": |
|
optional_params["suffix"] = value |
|
if param == "temperature": |
|
optional_params["temperature"] = value |
|
if param == "top_p": |
|
optional_params["top_p"] = value |
|
if param == "max_tokens" or param == "max_completion_tokens": |
|
optional_params["max_tokens"] = value |
|
if param == "stream" and value is True: |
|
optional_params["stream"] = value |
|
if param == "stop": |
|
optional_params["stop"] = value |
|
if param == "seed": |
|
optional_params["random_seed"] = value |
|
if param == "min_tokens": |
|
optional_params["min_tokens"] = value |
|
|
|
return optional_params |
|
|
|
def _chunk_parser(self, chunk_data: str) -> GenericStreamingChunk: |
|
|
|
text = "" |
|
is_finished = False |
|
finish_reason = None |
|
logprobs = None |
|
|
|
chunk_data = chunk_data.replace("data:", "") |
|
chunk_data = chunk_data.strip() |
|
if len(chunk_data) == 0 or chunk_data == "[DONE]": |
|
return { |
|
"text": "", |
|
"is_finished": is_finished, |
|
"finish_reason": finish_reason, |
|
} |
|
try: |
|
chunk_data_dict = json.loads(chunk_data) |
|
except json.JSONDecodeError: |
|
return { |
|
"text": "", |
|
"is_finished": is_finished, |
|
"finish_reason": finish_reason, |
|
} |
|
|
|
original_chunk = litellm.ModelResponse(**chunk_data_dict, stream=True) |
|
_choices = chunk_data_dict.get("choices", []) or [] |
|
_choice = _choices[0] |
|
text = _choice.get("delta", {}).get("content", "") |
|
|
|
if _choice.get("finish_reason") is not None: |
|
is_finished = True |
|
finish_reason = _choice.get("finish_reason") |
|
logprobs = _choice.get("logprobs") |
|
|
|
return GenericStreamingChunk( |
|
text=text, |
|
original_chunk=original_chunk, |
|
is_finished=is_finished, |
|
finish_reason=finish_reason, |
|
logprobs=logprobs, |
|
) |
|
|