Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
3.87 kB
import json
from typing import Optional
import litellm
from litellm.llms.openai.completion.transformation import OpenAITextCompletionConfig
from litellm.types.llms.databricks import GenericStreamingChunk
class CodestralTextCompletionConfig(OpenAITextCompletionConfig):
"""
Reference: https://docs.mistral.ai/api/#operation/createFIMCompletion
"""
suffix: Optional[str] = None
temperature: Optional[int] = None
max_tokens: Optional[int] = None
min_tokens: Optional[int] = None
stream: Optional[bool] = None
random_seed: Optional[int] = None
def __init__(
self,
suffix: Optional[str] = None,
temperature: Optional[int] = None,
top_p: Optional[float] = None,
max_tokens: Optional[int] = None,
min_tokens: Optional[int] = None,
stream: Optional[bool] = None,
random_seed: Optional[int] = None,
stop: Optional[str] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str):
return [
"suffix",
"temperature",
"top_p",
"max_tokens",
"max_completion_tokens",
"stream",
"seed",
"stop",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
for param, value in non_default_params.items():
if param == "suffix":
optional_params["suffix"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "max_tokens" or param == "max_completion_tokens":
optional_params["max_tokens"] = value
if param == "stream" and value is True:
optional_params["stream"] = value
if param == "stop":
optional_params["stop"] = value
if param == "seed":
optional_params["random_seed"] = value
if param == "min_tokens":
optional_params["min_tokens"] = value
return optional_params
def _chunk_parser(self, chunk_data: str) -> GenericStreamingChunk:
text = ""
is_finished = False
finish_reason = None
logprobs = None
chunk_data = chunk_data.replace("data:", "")
chunk_data = chunk_data.strip()
if len(chunk_data) == 0 or chunk_data == "[DONE]":
return {
"text": "",
"is_finished": is_finished,
"finish_reason": finish_reason,
}
try:
chunk_data_dict = json.loads(chunk_data)
except json.JSONDecodeError:
return {
"text": "",
"is_finished": is_finished,
"finish_reason": finish_reason,
}
original_chunk = litellm.ModelResponse(**chunk_data_dict, stream=True)
_choices = chunk_data_dict.get("choices", []) or []
_choice = _choices[0]
text = _choice.get("delta", {}).get("content", "")
if _choice.get("finish_reason") is not None:
is_finished = True
finish_reason = _choice.get("finish_reason")
logprobs = _choice.get("logprobs")
return GenericStreamingChunk(
text=text,
original_chunk=original_chunk,
is_finished=is_finished,
finish_reason=finish_reason,
logprobs=logprobs,
)