|
|
|
|
|
|
|
import json |
|
from functools import partial |
|
from typing import Callable, List, Optional, Union |
|
|
|
import httpx |
|
|
|
import litellm |
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging |
|
from litellm.litellm_core_utils.prompt_templates.factory import ( |
|
custom_prompt, |
|
prompt_factory, |
|
) |
|
from litellm.llms.custom_httpx.http_handler import ( |
|
AsyncHTTPHandler, |
|
get_async_httpx_client, |
|
) |
|
from litellm.types.utils import TextChoices |
|
from litellm.utils import CustomStreamWrapper, TextCompletionResponse |
|
|
|
|
|
class TextCompletionCodestralError(Exception): |
|
def __init__( |
|
self, |
|
status_code, |
|
message, |
|
request: Optional[httpx.Request] = None, |
|
response: Optional[httpx.Response] = None, |
|
): |
|
self.status_code = status_code |
|
self.message = message |
|
if request is not None: |
|
self.request = request |
|
else: |
|
self.request = httpx.Request( |
|
method="POST", |
|
url="https://docs.codestral.com/user-guide/inference/rest_api", |
|
) |
|
if response is not None: |
|
self.response = response |
|
else: |
|
self.response = httpx.Response( |
|
status_code=status_code, request=self.request |
|
) |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
|
|
async def make_call( |
|
client: AsyncHTTPHandler, |
|
api_base: str, |
|
headers: dict, |
|
data: str, |
|
model: str, |
|
messages: list, |
|
logging_obj, |
|
): |
|
response = await client.post(api_base, headers=headers, data=data, stream=True) |
|
|
|
if response.status_code != 200: |
|
raise TextCompletionCodestralError( |
|
status_code=response.status_code, message=response.text |
|
) |
|
|
|
completion_stream = response.aiter_lines() |
|
|
|
logging_obj.post_call( |
|
input=messages, |
|
api_key="", |
|
original_response=completion_stream, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
return completion_stream |
|
|
|
|
|
class CodestralTextCompletion: |
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
def _validate_environment( |
|
self, |
|
api_key: Optional[str], |
|
user_headers: dict, |
|
) -> dict: |
|
if api_key is None: |
|
raise ValueError( |
|
"Missing CODESTRAL_API_Key - Please add CODESTRAL_API_Key to your environment variables" |
|
) |
|
headers = { |
|
"content-type": "application/json", |
|
"Authorization": "Bearer {}".format(api_key), |
|
} |
|
if user_headers is not None and isinstance(user_headers, dict): |
|
headers = {**headers, **user_headers} |
|
return headers |
|
|
|
def output_parser(self, generated_text: str): |
|
""" |
|
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens. |
|
|
|
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763 |
|
""" |
|
chat_template_tokens = [ |
|
"<|assistant|>", |
|
"<|system|>", |
|
"<|user|>", |
|
"<s>", |
|
"</s>", |
|
] |
|
for token in chat_template_tokens: |
|
if generated_text.strip().startswith(token): |
|
generated_text = generated_text.replace(token, "", 1) |
|
if generated_text.endswith(token): |
|
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1] |
|
return generated_text |
|
|
|
def process_text_completion_response( |
|
self, |
|
model: str, |
|
response: httpx.Response, |
|
model_response: TextCompletionResponse, |
|
stream: bool, |
|
logging_obj: LiteLLMLogging, |
|
optional_params: dict, |
|
api_key: str, |
|
data: Union[dict, str], |
|
messages: list, |
|
print_verbose, |
|
encoding, |
|
) -> TextCompletionResponse: |
|
|
|
logging_obj.post_call( |
|
input=messages, |
|
api_key=api_key, |
|
original_response=response.text, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
print_verbose(f"codestral api: raw model_response: {response.text}") |
|
|
|
if response.status_code != 200: |
|
raise TextCompletionCodestralError( |
|
message=str(response.text), |
|
status_code=response.status_code, |
|
) |
|
try: |
|
completion_response = response.json() |
|
except Exception: |
|
raise TextCompletionCodestralError(message=response.text, status_code=422) |
|
|
|
_original_choices = completion_response.get("choices", []) |
|
_choices: List[TextChoices] = [] |
|
for choice in _original_choices: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_finish_reason = None |
|
_index = 0 |
|
_text = None |
|
_logprobs = None |
|
|
|
_choice_message = choice.get("message", {}) |
|
_choice = litellm.utils.TextChoices( |
|
finish_reason=choice.get("finish_reason"), |
|
index=choice.get("index"), |
|
text=_choice_message.get("content"), |
|
logprobs=choice.get("logprobs"), |
|
) |
|
|
|
_choices.append(_choice) |
|
|
|
_response = litellm.TextCompletionResponse( |
|
id=completion_response.get("id"), |
|
choices=_choices, |
|
created=completion_response.get("created"), |
|
model=completion_response.get("model"), |
|
usage=completion_response.get("usage"), |
|
stream=False, |
|
object=completion_response.get("object"), |
|
) |
|
return _response |
|
|
|
def completion( |
|
self, |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
custom_prompt_dict: dict, |
|
model_response: TextCompletionResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key: str, |
|
logging_obj, |
|
optional_params: dict, |
|
timeout: Union[float, httpx.Timeout], |
|
acompletion=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
headers: dict = {}, |
|
) -> Union[TextCompletionResponse, CustomStreamWrapper]: |
|
headers = self._validate_environment(api_key, headers) |
|
|
|
if optional_params.pop("custom_endpoint", None) is True: |
|
completion_url = api_base |
|
else: |
|
completion_url = ( |
|
api_base or "https://codestral.mistral.ai/v1/fim/completions" |
|
) |
|
|
|
if model in custom_prompt_dict: |
|
|
|
model_prompt_details = custom_prompt_dict[model] |
|
prompt = custom_prompt( |
|
role_dict=model_prompt_details["roles"], |
|
initial_prompt_value=model_prompt_details["initial_prompt_value"], |
|
final_prompt_value=model_prompt_details["final_prompt_value"], |
|
messages=messages, |
|
) |
|
else: |
|
prompt = prompt_factory(model=model, messages=messages) |
|
|
|
|
|
config = litellm.CodestralTextCompletionConfig.get_config() |
|
for k, v in config.items(): |
|
if ( |
|
k not in optional_params |
|
): |
|
optional_params[k] = v |
|
|
|
stream = optional_params.pop("stream", False) |
|
|
|
data = { |
|
"model": model, |
|
"prompt": prompt, |
|
**optional_params, |
|
} |
|
input_text = prompt |
|
|
|
logging_obj.pre_call( |
|
input=input_text, |
|
api_key=api_key, |
|
additional_args={ |
|
"complete_input_dict": data, |
|
"headers": headers, |
|
"api_base": completion_url, |
|
"acompletion": acompletion, |
|
}, |
|
) |
|
|
|
if acompletion is True: |
|
|
|
if stream is True: |
|
return self.async_streaming( |
|
model=model, |
|
messages=messages, |
|
data=data, |
|
api_base=completion_url, |
|
model_response=model_response, |
|
print_verbose=print_verbose, |
|
encoding=encoding, |
|
api_key=api_key, |
|
logging_obj=logging_obj, |
|
optional_params=optional_params, |
|
litellm_params=litellm_params, |
|
logger_fn=logger_fn, |
|
headers=headers, |
|
timeout=timeout, |
|
) |
|
else: |
|
|
|
return self.async_completion( |
|
model=model, |
|
messages=messages, |
|
data=data, |
|
api_base=completion_url, |
|
model_response=model_response, |
|
print_verbose=print_verbose, |
|
encoding=encoding, |
|
api_key=api_key, |
|
logging_obj=logging_obj, |
|
optional_params=optional_params, |
|
stream=False, |
|
litellm_params=litellm_params, |
|
logger_fn=logger_fn, |
|
headers=headers, |
|
timeout=timeout, |
|
) |
|
|
|
|
|
if stream is True: |
|
response = litellm.module_level_client.post( |
|
completion_url, |
|
headers=headers, |
|
data=json.dumps(data), |
|
stream=stream, |
|
) |
|
_response = CustomStreamWrapper( |
|
response.iter_lines(), |
|
model, |
|
custom_llm_provider="codestral", |
|
logging_obj=logging_obj, |
|
) |
|
return _response |
|
|
|
else: |
|
|
|
response = litellm.module_level_client.post( |
|
url=completion_url, |
|
headers=headers, |
|
data=json.dumps(data), |
|
) |
|
return self.process_text_completion_response( |
|
model=model, |
|
response=response, |
|
model_response=model_response, |
|
stream=optional_params.get("stream", False), |
|
logging_obj=logging_obj, |
|
optional_params=optional_params, |
|
api_key=api_key, |
|
data=data, |
|
messages=messages, |
|
print_verbose=print_verbose, |
|
encoding=encoding, |
|
) |
|
|
|
async def async_completion( |
|
self, |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
model_response: TextCompletionResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
stream, |
|
data: dict, |
|
optional_params: dict, |
|
timeout: Union[float, httpx.Timeout], |
|
litellm_params=None, |
|
logger_fn=None, |
|
headers={}, |
|
) -> TextCompletionResponse: |
|
|
|
async_handler = get_async_httpx_client( |
|
llm_provider=litellm.LlmProviders.TEXT_COMPLETION_CODESTRAL, |
|
params={"timeout": timeout}, |
|
) |
|
try: |
|
|
|
response = await async_handler.post( |
|
api_base, headers=headers, data=json.dumps(data) |
|
) |
|
except httpx.HTTPStatusError as e: |
|
raise TextCompletionCodestralError( |
|
status_code=e.response.status_code, |
|
message="HTTPStatusError - {}".format(e.response.text), |
|
) |
|
except Exception as e: |
|
raise TextCompletionCodestralError( |
|
status_code=500, message="{}".format(str(e)) |
|
) |
|
return self.process_text_completion_response( |
|
model=model, |
|
response=response, |
|
model_response=model_response, |
|
stream=stream, |
|
logging_obj=logging_obj, |
|
api_key=api_key, |
|
data=data, |
|
messages=messages, |
|
print_verbose=print_verbose, |
|
optional_params=optional_params, |
|
encoding=encoding, |
|
) |
|
|
|
async def async_streaming( |
|
self, |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
model_response: TextCompletionResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
data: dict, |
|
timeout: Union[float, httpx.Timeout], |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
headers={}, |
|
) -> CustomStreamWrapper: |
|
data["stream"] = True |
|
|
|
streamwrapper = CustomStreamWrapper( |
|
completion_stream=None, |
|
make_call=partial( |
|
make_call, |
|
api_base=api_base, |
|
headers=headers, |
|
data=json.dumps(data), |
|
model=model, |
|
messages=messages, |
|
logging_obj=logging_obj, |
|
), |
|
model=model, |
|
custom_llm_provider="text-completion-codestral", |
|
logging_obj=logging_obj, |
|
) |
|
return streamwrapper |
|
|
|
def embedding(self, *args, **kwargs): |
|
pass |
|
|