Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
13.9 kB
# What is this?
## handler file for TextCompletionCodestral Integration - https://codestral.com/
import json
from functools import partial
from typing import Callable, List, Optional, Union
import httpx # type: ignore
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
from litellm.litellm_core_utils.prompt_templates.factory import (
custom_prompt,
prompt_factory,
)
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
get_async_httpx_client,
)
from litellm.types.utils import TextChoices
from litellm.utils import CustomStreamWrapper, TextCompletionResponse
class TextCompletionCodestralError(Exception):
def __init__(
self,
status_code,
message,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
):
self.status_code = status_code
self.message = message
if request is not None:
self.request = request
else:
self.request = httpx.Request(
method="POST",
url="https://docs.codestral.com/user-guide/inference/rest_api",
)
if response is not None:
self.response = response
else:
self.response = httpx.Response(
status_code=status_code, request=self.request
)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
async def make_call(
client: AsyncHTTPHandler,
api_base: str,
headers: dict,
data: str,
model: str,
messages: list,
logging_obj,
):
response = await client.post(api_base, headers=headers, data=data, stream=True)
if response.status_code != 200:
raise TextCompletionCodestralError(
status_code=response.status_code, message=response.text
)
completion_stream = response.aiter_lines()
# LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=completion_stream, # Pass the completion stream for logging
additional_args={"complete_input_dict": data},
)
return completion_stream
class CodestralTextCompletion:
def __init__(self) -> None:
super().__init__()
def _validate_environment(
self,
api_key: Optional[str],
user_headers: dict,
) -> dict:
if api_key is None:
raise ValueError(
"Missing CODESTRAL_API_Key - Please add CODESTRAL_API_Key to your environment variables"
)
headers = {
"content-type": "application/json",
"Authorization": "Bearer {}".format(api_key),
}
if user_headers is not None and isinstance(user_headers, dict):
headers = {**headers, **user_headers}
return headers
def output_parser(self, generated_text: str):
"""
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
"""
chat_template_tokens = [
"<|assistant|>",
"<|system|>",
"<|user|>",
"<s>",
"</s>",
]
for token in chat_template_tokens:
if generated_text.strip().startswith(token):
generated_text = generated_text.replace(token, "", 1)
if generated_text.endswith(token):
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
return generated_text
def process_text_completion_response(
self,
model: str,
response: httpx.Response,
model_response: TextCompletionResponse,
stream: bool,
logging_obj: LiteLLMLogging,
optional_params: dict,
api_key: str,
data: Union[dict, str],
messages: list,
print_verbose,
encoding,
) -> TextCompletionResponse:
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"codestral api: raw model_response: {response.text}")
## RESPONSE OBJECT
if response.status_code != 200:
raise TextCompletionCodestralError(
message=str(response.text),
status_code=response.status_code,
)
try:
completion_response = response.json()
except Exception:
raise TextCompletionCodestralError(message=response.text, status_code=422)
_original_choices = completion_response.get("choices", [])
_choices: List[TextChoices] = []
for choice in _original_choices:
# This is what 1 choice looks like from codestral API
# {
# "index": 0,
# "message": {
# "role": "assistant",
# "content": "\n assert is_odd(1)\n assert",
# "tool_calls": null
# },
# "finish_reason": "length",
# "logprobs": null
# }
_finish_reason = None
_index = 0
_text = None
_logprobs = None
_choice_message = choice.get("message", {})
_choice = litellm.utils.TextChoices(
finish_reason=choice.get("finish_reason"),
index=choice.get("index"),
text=_choice_message.get("content"),
logprobs=choice.get("logprobs"),
)
_choices.append(_choice)
_response = litellm.TextCompletionResponse(
id=completion_response.get("id"),
choices=_choices,
created=completion_response.get("created"),
model=completion_response.get("model"),
usage=completion_response.get("usage"),
stream=False,
object=completion_response.get("object"),
)
return _response
def completion(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: TextCompletionResponse,
print_verbose: Callable,
encoding,
api_key: str,
logging_obj,
optional_params: dict,
timeout: Union[float, httpx.Timeout],
acompletion=None,
litellm_params=None,
logger_fn=None,
headers: dict = {},
) -> Union[TextCompletionResponse, CustomStreamWrapper]:
headers = self._validate_environment(api_key, headers)
if optional_params.pop("custom_endpoint", None) is True:
completion_url = api_base
else:
completion_url = (
api_base or "https://codestral.mistral.ai/v1/fim/completions"
)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
prompt = prompt_factory(model=model, messages=messages)
## Load Config
config = litellm.CodestralTextCompletionConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
stream = optional_params.pop("stream", False)
data = {
"model": model,
"prompt": prompt,
**optional_params,
}
input_text = prompt
## LOGGING
logging_obj.pre_call(
input=input_text,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": headers,
"api_base": completion_url,
"acompletion": acompletion,
},
)
## COMPLETION CALL
if acompletion is True:
### ASYNC STREAMING
if stream is True:
return self.async_streaming(
model=model,
messages=messages,
data=data,
api_base=completion_url,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
timeout=timeout,
) # type: ignore
else:
### ASYNC COMPLETION
return self.async_completion(
model=model,
messages=messages,
data=data,
api_base=completion_url,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
stream=False,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
timeout=timeout,
) # type: ignore
### SYNC STREAMING
if stream is True:
response = litellm.module_level_client.post(
completion_url,
headers=headers,
data=json.dumps(data),
stream=stream,
)
_response = CustomStreamWrapper(
response.iter_lines(),
model,
custom_llm_provider="codestral",
logging_obj=logging_obj,
)
return _response
### SYNC COMPLETION
else:
response = litellm.module_level_client.post(
url=completion_url,
headers=headers,
data=json.dumps(data),
)
return self.process_text_completion_response(
model=model,
response=response,
model_response=model_response,
stream=optional_params.get("stream", False),
logging_obj=logging_obj, # type: ignore
optional_params=optional_params,
api_key=api_key,
data=data,
messages=messages,
print_verbose=print_verbose,
encoding=encoding,
)
async def async_completion(
self,
model: str,
messages: list,
api_base: str,
model_response: TextCompletionResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
stream,
data: dict,
optional_params: dict,
timeout: Union[float, httpx.Timeout],
litellm_params=None,
logger_fn=None,
headers={},
) -> TextCompletionResponse:
async_handler = get_async_httpx_client(
llm_provider=litellm.LlmProviders.TEXT_COMPLETION_CODESTRAL,
params={"timeout": timeout},
)
try:
response = await async_handler.post(
api_base, headers=headers, data=json.dumps(data)
)
except httpx.HTTPStatusError as e:
raise TextCompletionCodestralError(
status_code=e.response.status_code,
message="HTTPStatusError - {}".format(e.response.text),
)
except Exception as e:
raise TextCompletionCodestralError(
status_code=500, message="{}".format(str(e))
) # don't use verbose_logger.exception, if exception is raised
return self.process_text_completion_response(
model=model,
response=response,
model_response=model_response,
stream=stream,
logging_obj=logging_obj,
api_key=api_key,
data=data,
messages=messages,
print_verbose=print_verbose,
optional_params=optional_params,
encoding=encoding,
)
async def async_streaming(
self,
model: str,
messages: list,
api_base: str,
model_response: TextCompletionResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
data: dict,
timeout: Union[float, httpx.Timeout],
optional_params=None,
litellm_params=None,
logger_fn=None,
headers={},
) -> CustomStreamWrapper:
data["stream"] = True
streamwrapper = CustomStreamWrapper(
completion_stream=None,
make_call=partial(
make_call,
api_base=api_base,
headers=headers,
data=json.dumps(data),
model=model,
messages=messages,
logging_obj=logging_obj,
),
model=model,
custom_llm_provider="text-completion-codestral",
logging_obj=logging_obj,
)
return streamwrapper
def embedding(self, *args, **kwargs):
pass