TestLLM / litellm /llms /base_llm /chat /transformation.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
6.19 kB
"""
Common base config for all LLM providers
"""
import types
from abc import ABC, abstractmethod
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Iterator,
List,
Optional,
Type,
Union,
)
import httpx
from pydantic import BaseModel
from litellm._logging import verbose_logger
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ModelResponse
from ..base_utils import (
map_developer_role_to_system_role,
type_to_response_format_param,
)
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class BaseLLMException(Exception):
def __init__(
self,
status_code: int,
message: str,
headers: Optional[Union[dict, httpx.Headers]] = None,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
):
self.status_code = status_code
self.message: str = message
self.headers = headers
if request:
self.request = request
else:
self.request = httpx.Request(
method="POST", url="https://docs.litellm.ai/docs"
)
if response:
self.response = response
else:
self.response = httpx.Response(
status_code=status_code, request=self.request
)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class BaseConfig(ABC):
def __init__(self):
pass
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not k.startswith("_abc")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_json_schema_from_pydantic_object(
self, response_format: Optional[Union[Type[BaseModel], dict]]
) -> Optional[dict]:
return type_to_response_format_param(response_format=response_format)
def should_fake_stream(
self,
model: Optional[str],
stream: Optional[bool],
custom_llm_provider: Optional[str] = None,
) -> bool:
"""
Returns True if the model/provider should fake stream
"""
return False
def translate_developer_role_to_system_role(
self,
messages: List[AllMessageValues],
) -> List[AllMessageValues]:
"""
Translate `developer` role to `system` role for non-OpenAI providers.
Overriden by OpenAI/Azure
"""
verbose_logger.debug(
"Translating developer role to system role for non-OpenAI providers."
) # ensure user knows what's happening with their input.
return map_developer_role_to_system_role(messages=messages)
def should_retry_llm_api_inside_llm_translation_on_http_error(
self, e: httpx.HTTPStatusError, litellm_params: dict
) -> bool:
"""
Returns True if the model/provider should retry the LLM API on UnprocessableEntityError
Overriden by azure ai - where different models support different parameters
"""
return False
def transform_request_on_unprocessable_entity_error(
self, e: httpx.HTTPStatusError, request_data: dict
) -> dict:
"""
Transform the request data on UnprocessableEntityError
"""
return request_data
@property
def max_retry_on_unprocessable_entity_error(self) -> int:
"""
Returns the max retry count for UnprocessableEntityError
Used if `should_retry_llm_api_inside_llm_translation_on_http_error` is True
"""
return 0
@abstractmethod
def get_supported_openai_params(self, model: str) -> list:
pass
@abstractmethod
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
pass
@abstractmethod
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
pass
def get_complete_url(
self,
api_base: str,
model: str,
optional_params: dict,
stream: Optional[bool] = None,
) -> str:
"""
OPTIONAL
Get the complete url for the request
Some providers need `model` in `api_base`
"""
return api_base
@abstractmethod
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
pass
@abstractmethod
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
pass
@abstractmethod
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
pass
def get_model_response_iterator(
self,
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
sync_stream: bool,
json_mode: Optional[bool] = False,
) -> Any:
pass
@property
def custom_llm_provider(self) -> Optional[str]:
return None