TestLLM / litellm /integrations /logfire_logger.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
6.16 kB
#### What this does ####
# On success + failure, log events to Logfire
import os
import traceback
import uuid
from enum import Enum
from typing import Any, Dict, NamedTuple
from typing_extensions import LiteralString
from litellm._logging import print_verbose, verbose_logger
from litellm.litellm_core_utils.redact_messages import redact_user_api_key_info
class SpanConfig(NamedTuple):
message_template: LiteralString
span_data: Dict[str, Any]
class LogfireLevel(str, Enum):
INFO = "info"
ERROR = "error"
class LogfireLogger:
# Class variables or attributes
def __init__(self):
try:
verbose_logger.debug("in init logfire logger")
import logfire
# only setting up logfire if we are sending to logfire
# in testing, we don't want to send to logfire
if logfire.DEFAULT_LOGFIRE_INSTANCE.config.send_to_logfire:
logfire.configure(token=os.getenv("LOGFIRE_TOKEN"))
except Exception as e:
print_verbose(f"Got exception on init logfire client {str(e)}")
raise e
def _get_span_config(self, payload) -> SpanConfig:
if (
payload["call_type"] == "completion"
or payload["call_type"] == "acompletion"
):
return SpanConfig(
message_template="Chat Completion with {request_data[model]!r}",
span_data={"request_data": payload},
)
elif (
payload["call_type"] == "embedding" or payload["call_type"] == "aembedding"
):
return SpanConfig(
message_template="Embedding Creation with {request_data[model]!r}",
span_data={"request_data": payload},
)
elif (
payload["call_type"] == "image_generation"
or payload["call_type"] == "aimage_generation"
):
return SpanConfig(
message_template="Image Generation with {request_data[model]!r}",
span_data={"request_data": payload},
)
else:
return SpanConfig(
message_template="Litellm Call with {request_data[model]!r}",
span_data={"request_data": payload},
)
async def _async_log_event(
self,
kwargs,
response_obj,
start_time,
end_time,
print_verbose,
level: LogfireLevel,
):
self.log_event(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
level=level,
)
def log_event(
self,
kwargs,
start_time,
end_time,
print_verbose,
level: LogfireLevel,
response_obj,
):
try:
import logfire
verbose_logger.debug(
f"logfire Logging - Enters logging function for model {kwargs}"
)
if not response_obj:
response_obj = {}
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
messages = kwargs.get("messages")
optional_params = kwargs.get("optional_params", {})
call_type = kwargs.get("call_type", "completion")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj.get("usage", {})
id = response_obj.get("id", str(uuid.uuid4()))
try:
response_time = (end_time - start_time).total_seconds()
except Exception:
response_time = None
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# clean litellm metadata before logging
if key in [
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
clean_metadata = redact_user_api_key_info(metadata=clean_metadata)
# Build the initial payload
payload = {
"id": id,
"call_type": call_type,
"cache_hit": cache_hit,
"startTime": start_time,
"endTime": end_time,
"responseTime (seconds)": response_time,
"model": kwargs.get("model", ""),
"user": kwargs.get("user", ""),
"modelParameters": optional_params,
"spend": kwargs.get("response_cost", 0),
"messages": messages,
"response": response_obj,
"usage": usage,
"metadata": clean_metadata,
}
logfire_openai = logfire.with_settings(custom_scope_suffix="openai")
message_template, span_data = self._get_span_config(payload)
if level == LogfireLevel.INFO:
logfire_openai.info(
message_template,
**span_data,
)
elif level == LogfireLevel.ERROR:
logfire_openai.error(
message_template,
**span_data,
_exc_info=True,
)
print_verbose(f"\ndd Logger - Logging payload = {payload}")
print_verbose(
f"Logfire Layer Logging - final response object: {response_obj}"
)
except Exception as e:
verbose_logger.debug(
f"Logfire Layer Error - {str(e)}\n{traceback.format_exc()}"
)
pass