|
import json |
|
import os |
|
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union |
|
|
|
from litellm._logging import verbose_logger |
|
from litellm.integrations.custom_batch_logger import CustomBatchLogger |
|
from litellm.llms.custom_httpx.http_handler import ( |
|
get_async_httpx_client, |
|
httpxSpecialProvider, |
|
) |
|
from litellm.types.integrations.gcs_bucket import * |
|
from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload |
|
|
|
if TYPE_CHECKING: |
|
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase |
|
else: |
|
VertexBase = Any |
|
IAM_AUTH_KEY = "IAM_AUTH" |
|
|
|
|
|
class GCSBucketBase(CustomBatchLogger): |
|
def __init__(self, bucket_name: Optional[str] = None, **kwargs) -> None: |
|
self.async_httpx_client = get_async_httpx_client( |
|
llm_provider=httpxSpecialProvider.LoggingCallback |
|
) |
|
_path_service_account = os.getenv("GCS_PATH_SERVICE_ACCOUNT") |
|
_bucket_name = bucket_name or os.getenv("GCS_BUCKET_NAME") |
|
self.path_service_account_json: Optional[str] = _path_service_account |
|
self.BUCKET_NAME: Optional[str] = _bucket_name |
|
self.vertex_instances: Dict[str, VertexBase] = {} |
|
super().__init__(**kwargs) |
|
|
|
async def construct_request_headers( |
|
self, |
|
service_account_json: Optional[str], |
|
vertex_instance: Optional[VertexBase] = None, |
|
) -> Dict[str, str]: |
|
from litellm import vertex_chat_completion |
|
|
|
if vertex_instance is None: |
|
vertex_instance = vertex_chat_completion |
|
|
|
_auth_header, vertex_project = await vertex_instance._ensure_access_token_async( |
|
credentials=service_account_json, |
|
project_id=None, |
|
custom_llm_provider="vertex_ai", |
|
) |
|
|
|
auth_header, _ = vertex_instance._get_token_and_url( |
|
model="gcs-bucket", |
|
auth_header=_auth_header, |
|
vertex_credentials=service_account_json, |
|
vertex_project=vertex_project, |
|
vertex_location=None, |
|
gemini_api_key=None, |
|
stream=None, |
|
custom_llm_provider="vertex_ai", |
|
api_base=None, |
|
) |
|
verbose_logger.debug("constructed auth_header %s", auth_header) |
|
headers = { |
|
"Authorization": f"Bearer {auth_header}", |
|
"Content-Type": "application/json", |
|
} |
|
|
|
return headers |
|
|
|
def sync_construct_request_headers(self) -> Dict[str, str]: |
|
from litellm import vertex_chat_completion |
|
|
|
_auth_header, vertex_project = vertex_chat_completion._ensure_access_token( |
|
credentials=self.path_service_account_json, |
|
project_id=None, |
|
custom_llm_provider="vertex_ai", |
|
) |
|
|
|
auth_header, _ = vertex_chat_completion._get_token_and_url( |
|
model="gcs-bucket", |
|
auth_header=_auth_header, |
|
vertex_credentials=self.path_service_account_json, |
|
vertex_project=vertex_project, |
|
vertex_location=None, |
|
gemini_api_key=None, |
|
stream=None, |
|
custom_llm_provider="vertex_ai", |
|
api_base=None, |
|
) |
|
verbose_logger.debug("constructed auth_header %s", auth_header) |
|
headers = { |
|
"Authorization": f"Bearer {auth_header}", |
|
"Content-Type": "application/json", |
|
} |
|
|
|
return headers |
|
|
|
def _handle_folders_in_bucket_name( |
|
self, |
|
bucket_name: str, |
|
object_name: str, |
|
) -> Tuple[str, str]: |
|
""" |
|
Handles when the user passes a bucket name with a folder postfix |
|
|
|
|
|
Example: |
|
- Bucket name: "my-bucket/my-folder/dev" |
|
- Object name: "my-object" |
|
- Returns: bucket_name="my-bucket", object_name="my-folder/dev/my-object" |
|
|
|
""" |
|
if "/" in bucket_name: |
|
bucket_name, prefix = bucket_name.split("/", 1) |
|
object_name = f"{prefix}/{object_name}" |
|
return bucket_name, object_name |
|
return bucket_name, object_name |
|
|
|
async def get_gcs_logging_config( |
|
self, kwargs: Optional[Dict[str, Any]] = {} |
|
) -> GCSLoggingConfig: |
|
""" |
|
This function is used to get the GCS logging config for the GCS Bucket Logger. |
|
It checks if the dynamic parameters are provided in the kwargs and uses them to get the GCS logging config. |
|
If no dynamic parameters are provided, it uses the default values. |
|
""" |
|
if kwargs is None: |
|
kwargs = {} |
|
|
|
standard_callback_dynamic_params: Optional[StandardCallbackDynamicParams] = ( |
|
kwargs.get("standard_callback_dynamic_params", None) |
|
) |
|
|
|
bucket_name: str |
|
path_service_account: Optional[str] |
|
if standard_callback_dynamic_params is not None: |
|
verbose_logger.debug("Using dynamic GCS logging") |
|
verbose_logger.debug( |
|
"standard_callback_dynamic_params: %s", standard_callback_dynamic_params |
|
) |
|
|
|
_bucket_name: Optional[str] = ( |
|
standard_callback_dynamic_params.get("gcs_bucket_name", None) |
|
or self.BUCKET_NAME |
|
) |
|
_path_service_account: Optional[str] = ( |
|
standard_callback_dynamic_params.get("gcs_path_service_account", None) |
|
or self.path_service_account_json |
|
) |
|
|
|
if _bucket_name is None: |
|
raise ValueError( |
|
"GCS_BUCKET_NAME is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_BUCKET_NAME' in the environment." |
|
) |
|
bucket_name = _bucket_name |
|
path_service_account = _path_service_account |
|
vertex_instance = await self.get_or_create_vertex_instance( |
|
credentials=path_service_account |
|
) |
|
else: |
|
|
|
if self.BUCKET_NAME is None: |
|
raise ValueError( |
|
"GCS_BUCKET_NAME is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_BUCKET_NAME' in the environment." |
|
) |
|
bucket_name = self.BUCKET_NAME |
|
path_service_account = self.path_service_account_json |
|
vertex_instance = await self.get_or_create_vertex_instance( |
|
credentials=path_service_account |
|
) |
|
|
|
return GCSLoggingConfig( |
|
bucket_name=bucket_name, |
|
vertex_instance=vertex_instance, |
|
path_service_account=path_service_account, |
|
) |
|
|
|
async def get_or_create_vertex_instance( |
|
self, credentials: Optional[str] |
|
) -> VertexBase: |
|
""" |
|
This function is used to get the Vertex instance for the GCS Bucket Logger. |
|
It checks if the Vertex instance is already created and cached, if not it creates a new instance and caches it. |
|
""" |
|
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase |
|
|
|
_in_memory_key = self._get_in_memory_key_for_vertex_instance(credentials) |
|
if _in_memory_key not in self.vertex_instances: |
|
vertex_instance = VertexBase() |
|
await vertex_instance._ensure_access_token_async( |
|
credentials=credentials, |
|
project_id=None, |
|
custom_llm_provider="vertex_ai", |
|
) |
|
self.vertex_instances[_in_memory_key] = vertex_instance |
|
return self.vertex_instances[_in_memory_key] |
|
|
|
def _get_in_memory_key_for_vertex_instance(self, credentials: Optional[str]) -> str: |
|
""" |
|
Returns key to use for caching the Vertex instance in-memory. |
|
|
|
When using Vertex with Key based logging, we need to cache the Vertex instance in-memory. |
|
|
|
- If a credentials string is provided, it is used as the key. |
|
- If no credentials string is provided, "IAM_AUTH" is used as the key. |
|
""" |
|
return credentials or IAM_AUTH_KEY |
|
|
|
async def download_gcs_object(self, object_name: str, **kwargs): |
|
""" |
|
Download an object from GCS. |
|
|
|
https://cloud.google.com/storage/docs/downloading-objects#download-object-json |
|
""" |
|
try: |
|
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( |
|
kwargs=kwargs |
|
) |
|
headers = await self.construct_request_headers( |
|
vertex_instance=gcs_logging_config["vertex_instance"], |
|
service_account_json=gcs_logging_config["path_service_account"], |
|
) |
|
bucket_name = gcs_logging_config["bucket_name"] |
|
bucket_name, object_name = self._handle_folders_in_bucket_name( |
|
bucket_name=bucket_name, |
|
object_name=object_name, |
|
) |
|
|
|
url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}?alt=media" |
|
|
|
|
|
response = await self.async_httpx_client.get(url=url, headers=headers) |
|
|
|
if response.status_code != 200: |
|
verbose_logger.error( |
|
"GCS object download error: %s", str(response.text) |
|
) |
|
return None |
|
|
|
verbose_logger.debug( |
|
"GCS object download response status code: %s", response.status_code |
|
) |
|
|
|
|
|
return response.content |
|
|
|
except Exception as e: |
|
verbose_logger.error("GCS object download error: %s", str(e)) |
|
return None |
|
|
|
async def delete_gcs_object(self, object_name: str, **kwargs): |
|
""" |
|
Delete an object from GCS. |
|
""" |
|
try: |
|
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( |
|
kwargs=kwargs |
|
) |
|
headers = await self.construct_request_headers( |
|
vertex_instance=gcs_logging_config["vertex_instance"], |
|
service_account_json=gcs_logging_config["path_service_account"], |
|
) |
|
bucket_name = gcs_logging_config["bucket_name"] |
|
bucket_name, object_name = self._handle_folders_in_bucket_name( |
|
bucket_name=bucket_name, |
|
object_name=object_name, |
|
) |
|
|
|
url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}" |
|
|
|
|
|
response = await self.async_httpx_client.delete(url=url, headers=headers) |
|
|
|
if (response.status_code != 200) or (response.status_code != 204): |
|
verbose_logger.error( |
|
"GCS object delete error: %s, status code: %s", |
|
str(response.text), |
|
response.status_code, |
|
) |
|
return None |
|
|
|
verbose_logger.debug( |
|
"GCS object delete response status code: %s, response: %s", |
|
response.status_code, |
|
response.text, |
|
) |
|
|
|
|
|
return response.text |
|
|
|
except Exception as e: |
|
verbose_logger.error("GCS object download error: %s", str(e)) |
|
return None |
|
|
|
async def _log_json_data_on_gcs( |
|
self, |
|
headers: Dict[str, str], |
|
bucket_name: str, |
|
object_name: str, |
|
logging_payload: Union[StandardLoggingPayload, str], |
|
): |
|
""" |
|
Helper function to make POST request to GCS Bucket in the specified bucket. |
|
""" |
|
if isinstance(logging_payload, str): |
|
json_logged_payload = logging_payload |
|
else: |
|
json_logged_payload = json.dumps(logging_payload, default=str) |
|
|
|
bucket_name, object_name = self._handle_folders_in_bucket_name( |
|
bucket_name=bucket_name, |
|
object_name=object_name, |
|
) |
|
|
|
response = await self.async_httpx_client.post( |
|
headers=headers, |
|
url=f"https://storage.googleapis.com/upload/storage/v1/b/{bucket_name}/o?uploadType=media&name={object_name}", |
|
data=json_logged_payload, |
|
) |
|
|
|
if response.status_code != 200: |
|
verbose_logger.error("GCS Bucket logging error: %s", str(response.text)) |
|
|
|
verbose_logger.debug("GCS Bucket response %s", response) |
|
verbose_logger.debug("GCS Bucket status code %s", response.status_code) |
|
verbose_logger.debug("GCS Bucket response.text %s", response.text) |
|
|
|
return response.json() |
|
|