TestLLM / litellm /adapters /anthropic_adapter.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
7.32 kB
# What is this?
## Translates OpenAI call to Anthropic `/v1/messages` format
import traceback
from typing import Any, Optional
import litellm
from litellm import ChatCompletionRequest, verbose_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.llms.anthropic import AnthropicMessagesRequest, AnthropicResponse
from litellm.types.utils import AdapterCompletionStreamWrapper, ModelResponse
class AnthropicAdapter(CustomLogger):
def __init__(self) -> None:
super().__init__()
def translate_completion_input_params(
self, kwargs
) -> Optional[ChatCompletionRequest]:
"""
- translate params, where needed
- pass rest, as is
"""
request_body = AnthropicMessagesRequest(**kwargs) # type: ignore
translated_body = litellm.AnthropicExperimentalPassThroughConfig().translate_anthropic_to_openai(
anthropic_message_request=request_body
)
return translated_body
def translate_completion_output_params(
self, response: ModelResponse
) -> Optional[AnthropicResponse]:
return litellm.AnthropicExperimentalPassThroughConfig().translate_openai_response_to_anthropic(
response=response
)
def translate_completion_output_params_streaming(
self, completion_stream: Any
) -> AdapterCompletionStreamWrapper | None:
return AnthropicStreamWrapper(completion_stream=completion_stream)
anthropic_adapter = AnthropicAdapter()
class AnthropicStreamWrapper(AdapterCompletionStreamWrapper):
"""
- first chunk return 'message_start'
- content block must be started and stopped
- finish_reason must map exactly to anthropic reason, else anthropic client won't be able to parse it.
"""
sent_first_chunk: bool = False
sent_content_block_start: bool = False
sent_content_block_finish: bool = False
sent_last_message: bool = False
holding_chunk: Optional[Any] = None
def __next__(self):
try:
if self.sent_first_chunk is False:
self.sent_first_chunk = True
return {
"type": "message_start",
"message": {
"id": "msg_1nZdL29xx5MUA1yADyHTEsnR8uuvGzszyY",
"type": "message",
"role": "assistant",
"content": [],
"model": "claude-3-5-sonnet-20240620",
"stop_reason": None,
"stop_sequence": None,
"usage": {"input_tokens": 25, "output_tokens": 1},
},
}
if self.sent_content_block_start is False:
self.sent_content_block_start = True
return {
"type": "content_block_start",
"index": 0,
"content_block": {"type": "text", "text": ""},
}
for chunk in self.completion_stream:
if chunk == "None" or chunk is None:
raise Exception
processed_chunk = litellm.AnthropicExperimentalPassThroughConfig().translate_streaming_openai_response_to_anthropic(
response=chunk
)
if (
processed_chunk["type"] == "message_delta"
and self.sent_content_block_finish is False
):
self.holding_chunk = processed_chunk
self.sent_content_block_finish = True
return {
"type": "content_block_stop",
"index": 0,
}
elif self.holding_chunk is not None:
return_chunk = self.holding_chunk
self.holding_chunk = processed_chunk
return return_chunk
else:
return processed_chunk
if self.holding_chunk is not None:
return_chunk = self.holding_chunk
self.holding_chunk = None
return return_chunk
if self.sent_last_message is False:
self.sent_last_message = True
return {"type": "message_stop"}
raise StopIteration
except StopIteration:
if self.sent_last_message is False:
self.sent_last_message = True
return {"type": "message_stop"}
raise StopIteration
except Exception as e:
verbose_logger.error(
"Anthropic Adapter - {}\n{}".format(e, traceback.format_exc())
)
async def __anext__(self):
try:
if self.sent_first_chunk is False:
self.sent_first_chunk = True
return {
"type": "message_start",
"message": {
"id": "msg_1nZdL29xx5MUA1yADyHTEsnR8uuvGzszyY",
"type": "message",
"role": "assistant",
"content": [],
"model": "claude-3-5-sonnet-20240620",
"stop_reason": None,
"stop_sequence": None,
"usage": {"input_tokens": 25, "output_tokens": 1},
},
}
if self.sent_content_block_start is False:
self.sent_content_block_start = True
return {
"type": "content_block_start",
"index": 0,
"content_block": {"type": "text", "text": ""},
}
async for chunk in self.completion_stream:
if chunk == "None" or chunk is None:
raise Exception
processed_chunk = litellm.AnthropicExperimentalPassThroughConfig().translate_streaming_openai_response_to_anthropic(
response=chunk
)
if (
processed_chunk["type"] == "message_delta"
and self.sent_content_block_finish is False
):
self.holding_chunk = processed_chunk
self.sent_content_block_finish = True
return {
"type": "content_block_stop",
"index": 0,
}
elif self.holding_chunk is not None:
return_chunk = self.holding_chunk
self.holding_chunk = processed_chunk
return return_chunk
else:
return processed_chunk
if self.holding_chunk is not None:
return_chunk = self.holding_chunk
self.holding_chunk = None
return return_chunk
if self.sent_last_message is False:
self.sent_last_message = True
return {"type": "message_stop"}
raise StopIteration
except StopIteration:
if self.sent_last_message is False:
self.sent_last_message = True
return {"type": "message_stop"}
raise StopAsyncIteration