File size: 23,231 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
"""
litellm.Router Types - includes RouterConfig, UpdateRouterConfig, ModelInfo etc
"""

import datetime
import enum
import uuid
from typing import Any, Dict, List, Literal, Optional, Tuple, Union, get_type_hints

import httpx
from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Required, TypedDict

from ..exceptions import RateLimitError
from .completion import CompletionRequest
from .embedding import EmbeddingRequest
from .utils import ModelResponse, ProviderSpecificModelInfo


class ConfigurableClientsideParamsCustomAuth(TypedDict):
    api_base: str


CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = Optional[
    List[Union[str, ConfigurableClientsideParamsCustomAuth]]
]


class ModelConfig(BaseModel):
    model_name: str
    litellm_params: Union[CompletionRequest, EmbeddingRequest]
    tpm: int
    rpm: int

    model_config = ConfigDict(protected_namespaces=())


class RouterConfig(BaseModel):
    model_list: List[ModelConfig]

    redis_url: Optional[str] = None
    redis_host: Optional[str] = None
    redis_port: Optional[int] = None
    redis_password: Optional[str] = None

    cache_responses: Optional[bool] = False
    cache_kwargs: Optional[Dict] = {}
    caching_groups: Optional[List[Tuple[str, List[str]]]] = None
    client_ttl: Optional[int] = 3600
    num_retries: Optional[int] = 0
    timeout: Optional[float] = None
    default_litellm_params: Optional[Dict[str, str]] = {}
    set_verbose: Optional[bool] = False
    fallbacks: Optional[List] = []
    allowed_fails: Optional[int] = None
    context_window_fallbacks: Optional[List] = []
    model_group_alias: Optional[Dict[str, List[str]]] = {}
    retry_after: Optional[int] = 0
    routing_strategy: Literal[
        "simple-shuffle",
        "least-busy",
        "usage-based-routing",
        "latency-based-routing",
    ] = "simple-shuffle"

    model_config = ConfigDict(protected_namespaces=())


class UpdateRouterConfig(BaseModel):
    """
    Set of params that you can modify via `router.update_settings()`.
    """

    routing_strategy_args: Optional[dict] = None
    routing_strategy: Optional[str] = None
    model_group_retry_policy: Optional[dict] = None
    allowed_fails: Optional[int] = None
    cooldown_time: Optional[float] = None
    num_retries: Optional[int] = None
    timeout: Optional[float] = None
    max_retries: Optional[int] = None
    retry_after: Optional[float] = None
    fallbacks: Optional[List[dict]] = None
    context_window_fallbacks: Optional[List[dict]] = None

    model_config = ConfigDict(protected_namespaces=())


class ModelInfo(BaseModel):
    id: Optional[
        str
    ]  # Allow id to be optional on input, but it will always be present as a str in the model instance
    db_model: bool = (
        False  # used for proxy - to separate models which are stored in the db vs. config.
    )
    updated_at: Optional[datetime.datetime] = None
    updated_by: Optional[str] = None

    created_at: Optional[datetime.datetime] = None
    created_by: Optional[str] = None

    base_model: Optional[str] = (
        None  # specify if the base model is azure/gpt-3.5-turbo etc for accurate cost tracking
    )
    tier: Optional[Literal["free", "paid"]] = None
    team_id: Optional[str] = None  # the team id that this model belongs to

    def __init__(self, id: Optional[Union[str, int]] = None, **params):
        if id is None:
            id = str(uuid.uuid4())  # Generate a UUID if id is None or not provided
        elif isinstance(id, int):
            id = str(id)
        super().__init__(id=id, **params)

    model_config = ConfigDict(extra="allow")

    def __contains__(self, key):
        # Define custom behavior for the 'in' operator
        return hasattr(self, key)

    def get(self, key, default=None):
        # Custom .get() method to access attributes with a default value if the attribute doesn't exist
        return getattr(self, key, default)

    def __getitem__(self, key):
        # Allow dictionary-style access to attributes
        return getattr(self, key)

    def __setitem__(self, key, value):
        # Allow dictionary-style assignment of attributes
        setattr(self, key, value)


class GenericLiteLLMParams(BaseModel):
    """
    LiteLLM Params without 'model' arg (used across completion / assistants api)
    """

    custom_llm_provider: Optional[str] = None
    tpm: Optional[int] = None
    rpm: Optional[int] = None
    api_key: Optional[str] = None
    api_base: Optional[str] = None
    api_version: Optional[str] = None
    timeout: Optional[Union[float, str, httpx.Timeout]] = (
        None  # if str, pass in as os.environ/
    )
    stream_timeout: Optional[Union[float, str]] = (
        None  # timeout when making stream=True calls, if str, pass in as os.environ/
    )
    max_retries: Optional[int] = None
    organization: Optional[str] = None  # for openai orgs
    configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = None
    ## LOGGING PARAMS ##
    litellm_trace_id: Optional[str] = None
    ## UNIFIED PROJECT/REGION ##
    region_name: Optional[str] = None
    ## VERTEX AI ##
    vertex_project: Optional[str] = None
    vertex_location: Optional[str] = None
    vertex_credentials: Optional[str] = None
    ## AWS BEDROCK / SAGEMAKER ##
    aws_access_key_id: Optional[str] = None
    aws_secret_access_key: Optional[str] = None
    aws_region_name: Optional[str] = None
    ## IBM WATSONX ##
    watsonx_region_name: Optional[str] = None
    ## CUSTOM PRICING ##
    input_cost_per_token: Optional[float] = None
    output_cost_per_token: Optional[float] = None
    input_cost_per_second: Optional[float] = None
    output_cost_per_second: Optional[float] = None

    max_file_size_mb: Optional[float] = None

    # Deployment budgets
    max_budget: Optional[float] = None
    budget_duration: Optional[str] = None
    use_in_pass_through: Optional[bool] = False
    model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True)

    def __init__(
        self,
        custom_llm_provider: Optional[str] = None,
        max_retries: Optional[Union[int, str]] = None,
        tpm: Optional[int] = None,
        rpm: Optional[int] = None,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        api_version: Optional[str] = None,
        timeout: Optional[Union[float, str]] = None,  # if str, pass in as os.environ/
        stream_timeout: Optional[Union[float, str]] = (
            None  # timeout when making stream=True calls, if str, pass in as os.environ/
        ),
        organization: Optional[str] = None,  # for openai orgs
        ## LOGGING PARAMS ##
        litellm_trace_id: Optional[str] = None,
        ## UNIFIED PROJECT/REGION ##
        region_name: Optional[str] = None,
        ## VERTEX AI ##
        vertex_project: Optional[str] = None,
        vertex_location: Optional[str] = None,
        vertex_credentials: Optional[str] = None,
        ## AWS BEDROCK / SAGEMAKER ##
        aws_access_key_id: Optional[str] = None,
        aws_secret_access_key: Optional[str] = None,
        aws_region_name: Optional[str] = None,
        ## IBM WATSONX ##
        watsonx_region_name: Optional[str] = None,
        input_cost_per_token: Optional[float] = None,
        output_cost_per_token: Optional[float] = None,
        input_cost_per_second: Optional[float] = None,
        output_cost_per_second: Optional[float] = None,
        max_file_size_mb: Optional[float] = None,
        # Deployment budgets
        max_budget: Optional[float] = None,
        budget_duration: Optional[str] = None,
        # Pass through params
        use_in_pass_through: Optional[bool] = False,
        **params,
    ):
        args = locals()
        args.pop("max_retries", None)
        args.pop("self", None)
        args.pop("params", None)
        args.pop("__class__", None)
        if max_retries is not None and isinstance(max_retries, str):
            max_retries = int(max_retries)  # cast to int
        super().__init__(max_retries=max_retries, **args, **params)

    def __contains__(self, key):
        # Define custom behavior for the 'in' operator
        return hasattr(self, key)

    def get(self, key, default=None):
        # Custom .get() method to access attributes with a default value if the attribute doesn't exist
        return getattr(self, key, default)

    def __getitem__(self, key):
        # Allow dictionary-style access to attributes
        return getattr(self, key)

    def __setitem__(self, key, value):
        # Allow dictionary-style assignment of attributes
        setattr(self, key, value)


class LiteLLM_Params(GenericLiteLLMParams):
    """
    LiteLLM Params with 'model' requirement - used for completions
    """

    model: str
    model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True)

    def __init__(
        self,
        model: str,
        custom_llm_provider: Optional[str] = None,
        max_retries: Optional[Union[int, str]] = None,
        tpm: Optional[int] = None,
        rpm: Optional[int] = None,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        api_version: Optional[str] = None,
        timeout: Optional[Union[float, str]] = None,  # if str, pass in as os.environ/
        stream_timeout: Optional[Union[float, str]] = (
            None  # timeout when making stream=True calls, if str, pass in as os.environ/
        ),
        organization: Optional[str] = None,  # for openai orgs
        ## VERTEX AI ##
        vertex_project: Optional[str] = None,
        vertex_location: Optional[str] = None,
        ## AWS BEDROCK / SAGEMAKER ##
        aws_access_key_id: Optional[str] = None,
        aws_secret_access_key: Optional[str] = None,
        aws_region_name: Optional[str] = None,
        # OpenAI / Azure Whisper
        # set a max-size of file that can be passed to litellm proxy
        max_file_size_mb: Optional[float] = None,
        # will use deployment on pass-through endpoints if True
        use_in_pass_through: Optional[bool] = False,
        **params,
    ):
        args = locals()
        args.pop("max_retries", None)
        args.pop("self", None)
        args.pop("params", None)
        args.pop("__class__", None)
        if max_retries is not None and isinstance(max_retries, str):
            max_retries = int(max_retries)  # cast to int
        super().__init__(max_retries=max_retries, **args, **params)

    def __contains__(self, key):
        # Define custom behavior for the 'in' operator
        return hasattr(self, key)

    def get(self, key, default=None):
        # Custom .get() method to access attributes with a default value if the attribute doesn't exist
        return getattr(self, key, default)

    def __getitem__(self, key):
        # Allow dictionary-style access to attributes
        return getattr(self, key)

    def __setitem__(self, key, value):
        # Allow dictionary-style assignment of attributes
        setattr(self, key, value)


class updateLiteLLMParams(GenericLiteLLMParams):
    # This class is used to update the LiteLLM_Params
    # only differece is model is optional
    model: Optional[str] = None


class updateDeployment(BaseModel):
    model_name: Optional[str] = None
    litellm_params: Optional[updateLiteLLMParams] = None
    model_info: Optional[ModelInfo] = None

    model_config = ConfigDict(protected_namespaces=())


class LiteLLMParamsTypedDict(TypedDict, total=False):
    model: str
    custom_llm_provider: Optional[str]
    tpm: Optional[int]
    rpm: Optional[int]
    order: Optional[int]
    weight: Optional[int]
    max_parallel_requests: Optional[int]
    api_key: Optional[str]
    api_base: Optional[str]
    api_version: Optional[str]
    timeout: Optional[Union[float, str, httpx.Timeout]]
    stream_timeout: Optional[Union[float, str]]
    max_retries: Optional[int]
    organization: Optional[Union[List, str]]  # for openai orgs
    configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS  # for allowing api base switching on finetuned models
    ## DROP PARAMS ##
    drop_params: Optional[bool]
    ## UNIFIED PROJECT/REGION ##
    region_name: Optional[str]
    ## VERTEX AI ##
    vertex_project: Optional[str]
    vertex_location: Optional[str]
    ## AWS BEDROCK / SAGEMAKER ##
    aws_access_key_id: Optional[str]
    aws_secret_access_key: Optional[str]
    aws_region_name: Optional[str]
    ## IBM WATSONX ##
    watsonx_region_name: Optional[str]
    ## CUSTOM PRICING ##
    input_cost_per_token: Optional[float]
    output_cost_per_token: Optional[float]
    input_cost_per_second: Optional[float]
    output_cost_per_second: Optional[float]
    num_retries: Optional[int]
    ## MOCK RESPONSES ##
    mock_response: Optional[Union[str, ModelResponse, Exception]]

    # routing params
    # use this for tag-based routing
    tags: Optional[List[str]]

    # deployment budgets
    max_budget: Optional[float]
    budget_duration: Optional[str]


class DeploymentTypedDict(TypedDict, total=False):
    model_name: Required[str]
    litellm_params: Required[LiteLLMParamsTypedDict]
    model_info: dict


SPECIAL_MODEL_INFO_PARAMS = [
    "input_cost_per_token",
    "output_cost_per_token",
    "input_cost_per_character",
    "output_cost_per_character",
]


class Deployment(BaseModel):
    model_name: str
    litellm_params: LiteLLM_Params
    model_info: ModelInfo

    model_config = ConfigDict(extra="allow", protected_namespaces=())

    def __init__(
        self,
        model_name: str,
        litellm_params: LiteLLM_Params,
        model_info: Optional[Union[ModelInfo, dict]] = None,
        **params,
    ):
        if model_info is None:
            model_info = ModelInfo()
        elif isinstance(model_info, dict):
            model_info = ModelInfo(**model_info)

        for (
            key
        ) in (
            SPECIAL_MODEL_INFO_PARAMS
        ):  # ensures custom pricing info is consistently in 'model_info'
            field = getattr(litellm_params, key, None)
            if field is not None:
                setattr(model_info, key, field)

        super().__init__(
            model_info=model_info,
            model_name=model_name,
            litellm_params=litellm_params,
            **params,
        )

    def to_json(self, **kwargs):
        try:
            return self.model_dump(**kwargs)  # noqa
        except Exception as e:
            # if using pydantic v1
            return self.dict(**kwargs)

    def __contains__(self, key):
        # Define custom behavior for the 'in' operator
        return hasattr(self, key)

    def get(self, key, default=None):
        # Custom .get() method to access attributes with a default value if the attribute doesn't exist
        return getattr(self, key, default)

    def __getitem__(self, key):
        # Allow dictionary-style access to attributes
        return getattr(self, key)

    def __setitem__(self, key, value):
        # Allow dictionary-style assignment of attributes
        setattr(self, key, value)


class RouterErrors(enum.Enum):
    """
    Enum for router specific errors with common codes
    """

    user_defined_ratelimit_error = "Deployment over user-defined ratelimit."
    no_deployments_available = "No deployments available for selected model"
    no_deployments_with_tag_routing = (
        "Not allowed to access model due to tags configuration"
    )
    no_deployments_with_provider_budget_routing = (
        "No deployments available - crossed budget"
    )


class AllowedFailsPolicy(BaseModel):
    """
    Use this to set a custom number of allowed fails/minute before cooling down a deployment
    If `AuthenticationErrorAllowedFails = 1000`, then 1000 AuthenticationError will be allowed before cooling down a deployment

    Mapping of Exception type to allowed_fails for each exception
    https://docs.litellm.ai/docs/exception_mapping
    """

    BadRequestErrorAllowedFails: Optional[int] = None
    AuthenticationErrorAllowedFails: Optional[int] = None
    TimeoutErrorAllowedFails: Optional[int] = None
    RateLimitErrorAllowedFails: Optional[int] = None
    ContentPolicyViolationErrorAllowedFails: Optional[int] = None
    InternalServerErrorAllowedFails: Optional[int] = None


class RetryPolicy(BaseModel):
    """
    Use this to set a custom number of retries per exception type
    If RateLimitErrorRetries = 3, then 3 retries will be made for RateLimitError
    Mapping of Exception type to number of retries
    https://docs.litellm.ai/docs/exception_mapping
    """

    BadRequestErrorRetries: Optional[int] = None
    AuthenticationErrorRetries: Optional[int] = None
    TimeoutErrorRetries: Optional[int] = None
    RateLimitErrorRetries: Optional[int] = None
    ContentPolicyViolationErrorRetries: Optional[int] = None
    InternalServerErrorRetries: Optional[int] = None


class AlertingConfig(BaseModel):
    """
    Use this configure alerting for the router. Receive alerts on the following events
    - LLM API Exceptions
    - LLM Responses Too Slow
    - LLM Requests Hanging

    Args:
        webhook_url: str            - webhook url for alerting, slack provides a webhook url to send alerts to
        alerting_threshold: Optional[float] = None - threshold for slow / hanging llm responses (in seconds)
    """

    webhook_url: str
    alerting_threshold: Optional[float] = 300


class ModelGroupInfo(BaseModel):
    model_group: str
    providers: List[str]
    max_input_tokens: Optional[float] = None
    max_output_tokens: Optional[float] = None
    input_cost_per_token: Optional[float] = None
    output_cost_per_token: Optional[float] = None
    mode: Optional[
        Union[
            str,
            Literal[
                "chat",
                "embedding",
                "completion",
                "image_generation",
                "audio_transcription",
                "rerank",
                "moderations",
            ],
        ]
    ] = Field(default="chat")
    tpm: Optional[int] = None
    rpm: Optional[int] = None
    supports_parallel_function_calling: bool = Field(default=False)
    supports_vision: bool = Field(default=False)
    supports_function_calling: bool = Field(default=False)
    supported_openai_params: Optional[List[str]] = Field(default=[])
    configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = None

    def __init__(self, **data):
        for field_name, field_type in get_type_hints(self.__class__).items():
            if field_type == bool and data.get(field_name) is None:
                data[field_name] = False
        super().__init__(**data)


class AssistantsTypedDict(TypedDict):
    custom_llm_provider: Literal["azure", "openai"]
    litellm_params: LiteLLMParamsTypedDict


class FineTuningConfig(BaseModel):

    custom_llm_provider: Literal["azure", "openai"]


class CustomRoutingStrategyBase:
    async def async_get_available_deployment(
        self,
        model: str,
        messages: Optional[List[Dict[str, str]]] = None,
        input: Optional[Union[str, List]] = None,
        specific_deployment: Optional[bool] = False,
        request_kwargs: Optional[Dict] = None,
    ):
        """
        Asynchronously retrieves the available deployment based on the given parameters.

        Args:
            model (str): The name of the model.
            messages (Optional[List[Dict[str, str]]], optional): The list of messages for a given request. Defaults to None.
            input (Optional[Union[str, List]], optional): The input for a given embedding request. Defaults to None.
            specific_deployment (Optional[bool], optional): Whether to retrieve a specific deployment. Defaults to False.
            request_kwargs (Optional[Dict], optional): Additional request keyword arguments. Defaults to None.

        Returns:
            Returns an element from litellm.router.model_list

        """
        pass

    def get_available_deployment(
        self,
        model: str,
        messages: Optional[List[Dict[str, str]]] = None,
        input: Optional[Union[str, List]] = None,
        specific_deployment: Optional[bool] = False,
        request_kwargs: Optional[Dict] = None,
    ):
        """
        Synchronously retrieves the available deployment based on the given parameters.

        Args:
            model (str): The name of the model.
            messages (Optional[List[Dict[str, str]]], optional): The list of messages for a given request. Defaults to None.
            input (Optional[Union[str, List]], optional): The input for a given embedding request. Defaults to None.
            specific_deployment (Optional[bool], optional): Whether to retrieve a specific deployment. Defaults to False.
            request_kwargs (Optional[Dict], optional): Additional request keyword arguments. Defaults to None.

        Returns:
            Returns an element from litellm.router.model_list

        """
        pass


class RouterGeneralSettings(BaseModel):
    async_only_mode: bool = Field(
        default=False
    )  # this will only initialize async clients. Good for memory utils
    pass_through_all_models: bool = Field(
        default=False
    )  # if passed a model not llm_router model list, pass through the request to litellm.acompletion/embedding


class RouterRateLimitErrorBasic(ValueError):
    """
    Raise a basic error inside helper functions.
    """

    def __init__(
        self,
        model: str,
    ):
        self.model = model
        _message = f"{RouterErrors.no_deployments_available.value}."
        super().__init__(_message)


class RouterRateLimitError(ValueError):
    def __init__(
        self,
        model: str,
        cooldown_time: float,
        enable_pre_call_checks: bool,
        cooldown_list: List,
    ):
        self.model = model
        self.cooldown_time = cooldown_time
        self.enable_pre_call_checks = enable_pre_call_checks
        self.cooldown_list = cooldown_list
        _message = f"{RouterErrors.no_deployments_available.value}, Try again in {cooldown_time} seconds. Passed model={model}. pre-call-checks={enable_pre_call_checks}, cooldown_list={cooldown_list}"
        super().__init__(_message)


class RouterModelGroupAliasItem(TypedDict):
    model: str
    hidden: bool  # if 'True', don't return on `.get_model_list`


VALID_LITELLM_ENVIRONMENTS = [
    "development",
    "staging",
    "production",
]


class RoutingStrategy(enum.Enum):
    LEAST_BUSY = "least-busy"
    LATENCY_BASED = "latency-based-routing"
    COST_BASED = "cost-based-routing"
    USAGE_BASED_ROUTING_V2 = "usage-based-routing-v2"
    USAGE_BASED_ROUTING = "usage-based-routing"
    PROVIDER_BUDGET_LIMITING = "provider-budget-routing"


class RouterCacheEnum(enum.Enum):
    TPM = "global_router:{id}:{model}:tpm:{current_minute}"
    RPM = "global_router:{id}:{model}:rpm:{current_minute}"


class GenericBudgetWindowDetails(BaseModel):
    """Details about a provider's budget window"""

    budget_start: float
    spend_key: str
    start_time_key: str
    ttl_seconds: int


OptionalPreCallChecks = List[Literal["prompt_caching", "router_budget_limiting"]]