File size: 10,359 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# +------------------------------------+
#
#        Prompt Injection Detection
#
# +------------------------------------+
#  Thank you users! We ❤️ you! - Krrish & Ishaan
## Reject a call if it contains a prompt injection attack.


from difflib import SequenceMatcher
from typing import List, Literal, Optional

from fastapi import HTTPException

import litellm
from litellm._logging import verbose_proxy_logger
from litellm.caching.caching import DualCache
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.prompt_templates.factory import (
    prompt_injection_detection_default_pt,
)
from litellm.proxy._types import LiteLLMPromptInjectionParams, UserAPIKeyAuth
from litellm.router import Router
from litellm.utils import get_formatted_prompt


class _OPTIONAL_PromptInjectionDetection(CustomLogger):
    # Class variables or attributes
    def __init__(
        self,
        prompt_injection_params: Optional[LiteLLMPromptInjectionParams] = None,
    ):
        self.prompt_injection_params = prompt_injection_params
        self.llm_router: Optional[Router] = None

        self.verbs = [
            "Ignore",
            "Disregard",
            "Skip",
            "Forget",
            "Neglect",
            "Overlook",
            "Omit",
            "Bypass",
            "Pay no attention to",
            "Do not follow",
            "Do not obey",
        ]
        self.adjectives = [
            "",
            "prior",
            "previous",
            "preceding",
            "above",
            "foregoing",
            "earlier",
            "initial",
        ]
        self.prepositions = [
            "",
            "and start over",
            "and start anew",
            "and begin afresh",
            "and start from scratch",
        ]

    def print_verbose(self, print_statement, level: Literal["INFO", "DEBUG"] = "DEBUG"):
        if level == "INFO":
            verbose_proxy_logger.info(print_statement)
        elif level == "DEBUG":
            verbose_proxy_logger.debug(print_statement)

        if litellm.set_verbose is True:
            print(print_statement)  # noqa

    def update_environment(self, router: Optional[Router] = None):
        self.llm_router = router

        if (
            self.prompt_injection_params is not None
            and self.prompt_injection_params.llm_api_check is True
        ):
            if self.llm_router is None:
                raise Exception(
                    "PromptInjectionDetection: Model List not set. Required for Prompt Injection detection."
                )

            self.print_verbose(
                f"model_names: {self.llm_router.model_names}; self.prompt_injection_params.llm_api_name: {self.prompt_injection_params.llm_api_name}"
            )
            if (
                self.prompt_injection_params.llm_api_name is None
                or self.prompt_injection_params.llm_api_name
                not in self.llm_router.model_names
            ):
                raise Exception(
                    "PromptInjectionDetection: Invalid LLM API Name. LLM API Name must be a 'model_name' in 'model_list'."
                )

    def generate_injection_keywords(self) -> List[str]:
        combinations = []
        for verb in self.verbs:
            for adj in self.adjectives:
                for prep in self.prepositions:
                    phrase = " ".join(filter(None, [verb, adj, prep])).strip()
                    if (
                        len(phrase.split()) > 2
                    ):  # additional check to ensure more than 2 words
                        combinations.append(phrase.lower())
        return combinations

    def check_user_input_similarity(
        self, user_input: str, similarity_threshold: float = 0.7
    ) -> bool:
        user_input_lower = user_input.lower()
        keywords = self.generate_injection_keywords()

        for keyword in keywords:
            # Calculate the length of the keyword to extract substrings of the same length from user input
            keyword_length = len(keyword)

            for i in range(len(user_input_lower) - keyword_length + 1):
                # Extract a substring of the same length as the keyword
                substring = user_input_lower[i : i + keyword_length]

                # Calculate similarity
                match_ratio = SequenceMatcher(None, substring, keyword).ratio()
                if match_ratio > similarity_threshold:
                    self.print_verbose(
                        print_statement=f"Rejected user input - {user_input}. {match_ratio} similar to {keyword}",
                        level="INFO",
                    )
                    return True  # Found a highly similar substring
        return False  # No substring crossed the threshold

    async def async_pre_call_hook(
        self,
        user_api_key_dict: UserAPIKeyAuth,
        cache: DualCache,
        data: dict,
        call_type: str,  # "completion", "embeddings", "image_generation", "moderation"
    ):
        try:
            """
            - check if user id part of call
            - check if user id part of blocked list
            """
            self.print_verbose("Inside Prompt Injection Detection Pre-Call Hook")
            try:
                assert call_type in [
                    "completion",
                    "text_completion",
                    "embeddings",
                    "image_generation",
                    "moderation",
                    "audio_transcription",
                ]
            except Exception:
                self.print_verbose(
                    f"Call Type - {call_type}, not in accepted list - ['completion','embeddings','image_generation','moderation','audio_transcription']"
                )
                return data
            formatted_prompt = get_formatted_prompt(data=data, call_type=call_type)  # type: ignore

            is_prompt_attack = False

            if self.prompt_injection_params is not None:
                # 1. check if heuristics check turned on
                if self.prompt_injection_params.heuristics_check is True:
                    is_prompt_attack = self.check_user_input_similarity(
                        user_input=formatted_prompt
                    )
                    if is_prompt_attack is True:
                        raise HTTPException(
                            status_code=400,
                            detail={
                                "error": "Rejected message. This is a prompt injection attack."
                            },
                        )
                # 2. check if vector db similarity check turned on [TODO] Not Implemented yet
                if self.prompt_injection_params.vector_db_check is True:
                    pass
            else:
                is_prompt_attack = self.check_user_input_similarity(
                    user_input=formatted_prompt
                )

            if is_prompt_attack is True:
                raise HTTPException(
                    status_code=400,
                    detail={
                        "error": "Rejected message. This is a prompt injection attack."
                    },
                )

            return data

        except HTTPException as e:

            if (
                e.status_code == 400
                and isinstance(e.detail, dict)
                and "error" in e.detail  # type: ignore
                and self.prompt_injection_params is not None
                and self.prompt_injection_params.reject_as_response
            ):
                return e.detail.get("error")
            raise e
        except Exception as e:
            verbose_proxy_logger.exception(
                "litellm.proxy.hooks.prompt_injection_detection.py::async_pre_call_hook(): Exception occured - {}".format(
                    str(e)
                )
            )

    async def async_moderation_hook(  # type: ignore
        self,
        data: dict,
        user_api_key_dict: UserAPIKeyAuth,
        call_type: Literal[
            "completion",
            "embeddings",
            "image_generation",
            "moderation",
            "audio_transcription",
        ],
    ) -> Optional[bool]:
        self.print_verbose(
            f"IN ASYNC MODERATION HOOK - self.prompt_injection_params = {self.prompt_injection_params}"
        )

        if self.prompt_injection_params is None:
            return None

        formatted_prompt = get_formatted_prompt(data=data, call_type=call_type)  # type: ignore
        is_prompt_attack = False

        prompt_injection_system_prompt = getattr(
            self.prompt_injection_params,
            "llm_api_system_prompt",
            prompt_injection_detection_default_pt(),
        )

        # 3. check if llm api check turned on
        if (
            self.prompt_injection_params.llm_api_check is True
            and self.prompt_injection_params.llm_api_name is not None
            and self.llm_router is not None
        ):
            # make a call to the llm api
            response = await self.llm_router.acompletion(
                model=self.prompt_injection_params.llm_api_name,
                messages=[
                    {
                        "role": "system",
                        "content": prompt_injection_system_prompt,
                    },
                    {"role": "user", "content": formatted_prompt},
                ],
            )

            self.print_verbose(f"Received LLM Moderation response: {response}")
            self.print_verbose(
                f"llm_api_fail_call_string: {self.prompt_injection_params.llm_api_fail_call_string}"
            )
            if isinstance(response, litellm.ModelResponse) and isinstance(
                response.choices[0], litellm.Choices
            ):
                if self.prompt_injection_params.llm_api_fail_call_string in response.choices[0].message.content:  # type: ignore
                    is_prompt_attack = True

        if is_prompt_attack is True:
            raise HTTPException(
                status_code=400,
                detail={
                    "error": "Rejected message. This is a prompt injection attack."
                },
            )

        return is_prompt_attack