File size: 10,359 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# +------------------------------------+
#
# Prompt Injection Detection
#
# +------------------------------------+
# Thank you users! We ❤️ you! - Krrish & Ishaan
## Reject a call if it contains a prompt injection attack.
from difflib import SequenceMatcher
from typing import List, Literal, Optional
from fastapi import HTTPException
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.caching.caching import DualCache
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.prompt_templates.factory import (
prompt_injection_detection_default_pt,
)
from litellm.proxy._types import LiteLLMPromptInjectionParams, UserAPIKeyAuth
from litellm.router import Router
from litellm.utils import get_formatted_prompt
class _OPTIONAL_PromptInjectionDetection(CustomLogger):
# Class variables or attributes
def __init__(
self,
prompt_injection_params: Optional[LiteLLMPromptInjectionParams] = None,
):
self.prompt_injection_params = prompt_injection_params
self.llm_router: Optional[Router] = None
self.verbs = [
"Ignore",
"Disregard",
"Skip",
"Forget",
"Neglect",
"Overlook",
"Omit",
"Bypass",
"Pay no attention to",
"Do not follow",
"Do not obey",
]
self.adjectives = [
"",
"prior",
"previous",
"preceding",
"above",
"foregoing",
"earlier",
"initial",
]
self.prepositions = [
"",
"and start over",
"and start anew",
"and begin afresh",
"and start from scratch",
]
def print_verbose(self, print_statement, level: Literal["INFO", "DEBUG"] = "DEBUG"):
if level == "INFO":
verbose_proxy_logger.info(print_statement)
elif level == "DEBUG":
verbose_proxy_logger.debug(print_statement)
if litellm.set_verbose is True:
print(print_statement) # noqa
def update_environment(self, router: Optional[Router] = None):
self.llm_router = router
if (
self.prompt_injection_params is not None
and self.prompt_injection_params.llm_api_check is True
):
if self.llm_router is None:
raise Exception(
"PromptInjectionDetection: Model List not set. Required for Prompt Injection detection."
)
self.print_verbose(
f"model_names: {self.llm_router.model_names}; self.prompt_injection_params.llm_api_name: {self.prompt_injection_params.llm_api_name}"
)
if (
self.prompt_injection_params.llm_api_name is None
or self.prompt_injection_params.llm_api_name
not in self.llm_router.model_names
):
raise Exception(
"PromptInjectionDetection: Invalid LLM API Name. LLM API Name must be a 'model_name' in 'model_list'."
)
def generate_injection_keywords(self) -> List[str]:
combinations = []
for verb in self.verbs:
for adj in self.adjectives:
for prep in self.prepositions:
phrase = " ".join(filter(None, [verb, adj, prep])).strip()
if (
len(phrase.split()) > 2
): # additional check to ensure more than 2 words
combinations.append(phrase.lower())
return combinations
def check_user_input_similarity(
self, user_input: str, similarity_threshold: float = 0.7
) -> bool:
user_input_lower = user_input.lower()
keywords = self.generate_injection_keywords()
for keyword in keywords:
# Calculate the length of the keyword to extract substrings of the same length from user input
keyword_length = len(keyword)
for i in range(len(user_input_lower) - keyword_length + 1):
# Extract a substring of the same length as the keyword
substring = user_input_lower[i : i + keyword_length]
# Calculate similarity
match_ratio = SequenceMatcher(None, substring, keyword).ratio()
if match_ratio > similarity_threshold:
self.print_verbose(
print_statement=f"Rejected user input - {user_input}. {match_ratio} similar to {keyword}",
level="INFO",
)
return True # Found a highly similar substring
return False # No substring crossed the threshold
async def async_pre_call_hook(
self,
user_api_key_dict: UserAPIKeyAuth,
cache: DualCache,
data: dict,
call_type: str, # "completion", "embeddings", "image_generation", "moderation"
):
try:
"""
- check if user id part of call
- check if user id part of blocked list
"""
self.print_verbose("Inside Prompt Injection Detection Pre-Call Hook")
try:
assert call_type in [
"completion",
"text_completion",
"embeddings",
"image_generation",
"moderation",
"audio_transcription",
]
except Exception:
self.print_verbose(
f"Call Type - {call_type}, not in accepted list - ['completion','embeddings','image_generation','moderation','audio_transcription']"
)
return data
formatted_prompt = get_formatted_prompt(data=data, call_type=call_type) # type: ignore
is_prompt_attack = False
if self.prompt_injection_params is not None:
# 1. check if heuristics check turned on
if self.prompt_injection_params.heuristics_check is True:
is_prompt_attack = self.check_user_input_similarity(
user_input=formatted_prompt
)
if is_prompt_attack is True:
raise HTTPException(
status_code=400,
detail={
"error": "Rejected message. This is a prompt injection attack."
},
)
# 2. check if vector db similarity check turned on [TODO] Not Implemented yet
if self.prompt_injection_params.vector_db_check is True:
pass
else:
is_prompt_attack = self.check_user_input_similarity(
user_input=formatted_prompt
)
if is_prompt_attack is True:
raise HTTPException(
status_code=400,
detail={
"error": "Rejected message. This is a prompt injection attack."
},
)
return data
except HTTPException as e:
if (
e.status_code == 400
and isinstance(e.detail, dict)
and "error" in e.detail # type: ignore
and self.prompt_injection_params is not None
and self.prompt_injection_params.reject_as_response
):
return e.detail.get("error")
raise e
except Exception as e:
verbose_proxy_logger.exception(
"litellm.proxy.hooks.prompt_injection_detection.py::async_pre_call_hook(): Exception occured - {}".format(
str(e)
)
)
async def async_moderation_hook( # type: ignore
self,
data: dict,
user_api_key_dict: UserAPIKeyAuth,
call_type: Literal[
"completion",
"embeddings",
"image_generation",
"moderation",
"audio_transcription",
],
) -> Optional[bool]:
self.print_verbose(
f"IN ASYNC MODERATION HOOK - self.prompt_injection_params = {self.prompt_injection_params}"
)
if self.prompt_injection_params is None:
return None
formatted_prompt = get_formatted_prompt(data=data, call_type=call_type) # type: ignore
is_prompt_attack = False
prompt_injection_system_prompt = getattr(
self.prompt_injection_params,
"llm_api_system_prompt",
prompt_injection_detection_default_pt(),
)
# 3. check if llm api check turned on
if (
self.prompt_injection_params.llm_api_check is True
and self.prompt_injection_params.llm_api_name is not None
and self.llm_router is not None
):
# make a call to the llm api
response = await self.llm_router.acompletion(
model=self.prompt_injection_params.llm_api_name,
messages=[
{
"role": "system",
"content": prompt_injection_system_prompt,
},
{"role": "user", "content": formatted_prompt},
],
)
self.print_verbose(f"Received LLM Moderation response: {response}")
self.print_verbose(
f"llm_api_fail_call_string: {self.prompt_injection_params.llm_api_fail_call_string}"
)
if isinstance(response, litellm.ModelResponse) and isinstance(
response.choices[0], litellm.Choices
):
if self.prompt_injection_params.llm_api_fail_call_string in response.choices[0].message.content: # type: ignore
is_prompt_attack = True
if is_prompt_attack is True:
raise HTTPException(
status_code=400,
detail={
"error": "Rejected message. This is a prompt injection attack."
},
)
return is_prompt_attack
|