File size: 5,975 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import time  # type: ignore
from typing import Callable

import httpx

from litellm.litellm_core_utils.prompt_templates.factory import (
    custom_prompt,
    prompt_factory,
)
from litellm.utils import ModelResponse, Usage

llm = None


class VLLMError(Exception):
    def __init__(self, status_code, message):
        self.status_code = status_code
        self.message = message
        self.request = httpx.Request(method="POST", url="http://0.0.0.0:8000")
        self.response = httpx.Response(status_code=status_code, request=self.request)
        super().__init__(
            self.message
        )  # Call the base class constructor with the parameters it needs


# check if vllm is installed
def validate_environment(model: str):
    global llm
    try:
        from vllm import LLM, SamplingParams  # type: ignore

        if llm is None:
            llm = LLM(model=model)
        return llm, SamplingParams
    except Exception as e:
        raise VLLMError(status_code=0, message=str(e))


def completion(
    model: str,
    messages: list,
    model_response: ModelResponse,
    print_verbose: Callable,
    encoding,
    logging_obj,
    optional_params: dict,
    custom_prompt_dict={},
    litellm_params=None,
    logger_fn=None,
):
    global llm
    try:
        llm, SamplingParams = validate_environment(model=model)
    except Exception as e:
        raise VLLMError(status_code=0, message=str(e))
    sampling_params = SamplingParams(**optional_params)
    if model in custom_prompt_dict:
        # check if the model has a registered custom prompt
        model_prompt_details = custom_prompt_dict[model]
        prompt = custom_prompt(
            role_dict=model_prompt_details["roles"],
            initial_prompt_value=model_prompt_details["initial_prompt_value"],
            final_prompt_value=model_prompt_details["final_prompt_value"],
            messages=messages,
        )
    else:
        prompt = prompt_factory(model=model, messages=messages)

    ## LOGGING
    logging_obj.pre_call(
        input=prompt,
        api_key="",
        additional_args={"complete_input_dict": sampling_params},
    )

    if llm:
        outputs = llm.generate(prompt, sampling_params)
    else:
        raise VLLMError(
            status_code=0, message="Need to pass in a model name to initialize vllm"
        )

    ## COMPLETION CALL
    if "stream" in optional_params and optional_params["stream"] is True:
        return iter(outputs)
    else:
        ## LOGGING
        logging_obj.post_call(
            input=prompt,
            api_key="",
            original_response=outputs,
            additional_args={"complete_input_dict": sampling_params},
        )
        print_verbose(f"raw model_response: {outputs}")
        ## RESPONSE OBJECT
        model_response.choices[0].message.content = outputs[0].outputs[0].text  # type: ignore

        ## CALCULATING USAGE
        prompt_tokens = len(outputs[0].prompt_token_ids)
        completion_tokens = len(outputs[0].outputs[0].token_ids)

        model_response.created = int(time.time())
        model_response.model = model
        usage = Usage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=prompt_tokens + completion_tokens,
        )
        setattr(model_response, "usage", usage)
        return model_response


def batch_completions(
    model: str, messages: list, optional_params=None, custom_prompt_dict={}
):
    """
    Example usage:
    import litellm
    import os
    from litellm import batch_completion


    responses = batch_completion(
        model="vllm/facebook/opt-125m",
        messages = [
            [
                {
                    "role": "user",
                    "content": "good morning? "
                }
            ],
            [
                {
                    "role": "user",
                    "content": "what's the time? "
                }
            ]
        ]
    )
    """
    try:
        llm, SamplingParams = validate_environment(model=model)
    except Exception as e:
        error_str = str(e)
        raise VLLMError(status_code=0, message=error_str)
    sampling_params = SamplingParams(**optional_params)
    prompts = []
    if model in custom_prompt_dict:
        # check if the model has a registered custom prompt
        model_prompt_details = custom_prompt_dict[model]
        for message in messages:
            prompt = custom_prompt(
                role_dict=model_prompt_details["roles"],
                initial_prompt_value=model_prompt_details["initial_prompt_value"],
                final_prompt_value=model_prompt_details["final_prompt_value"],
                messages=message,
            )
            prompts.append(prompt)
    else:
        for message in messages:
            prompt = prompt_factory(model=model, messages=message)
            prompts.append(prompt)

    if llm:
        outputs = llm.generate(prompts, sampling_params)
    else:
        raise VLLMError(
            status_code=0, message="Need to pass in a model name to initialize vllm"
        )

    final_outputs = []
    for output in outputs:
        model_response = ModelResponse()
        ## RESPONSE OBJECT
        model_response.choices[0].message.content = output.outputs[0].text  # type: ignore

        ## CALCULATING USAGE
        prompt_tokens = len(output.prompt_token_ids)
        completion_tokens = len(output.outputs[0].token_ids)

        model_response.created = int(time.time())
        model_response.model = model
        usage = Usage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=prompt_tokens + completion_tokens,
        )
        setattr(model_response, "usage", usage)
        final_outputs.append(model_response)
    return final_outputs


def embedding():
    # logic for parsing in - calling - parsing out model embedding calls
    pass