File size: 18,535 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
"""
Transformation logic from OpenAI format to Gemini format.
Why separate file? Make it easy to see how transformation works
"""
import os
from typing import TYPE_CHECKING, List, Literal, Optional, Tuple, Union, cast
import httpx
from pydantic import BaseModel
import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.prompt_templates.factory import (
convert_to_anthropic_image_obj,
convert_to_gemini_tool_call_invoke,
convert_to_gemini_tool_call_result,
response_schema_prompt,
)
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.types.files import (
get_file_mime_type_for_file_type,
get_file_type_from_extension,
is_gemini_1_5_accepted_file_type,
)
from litellm.types.llms.openai import (
AllMessageValues,
ChatCompletionAssistantMessage,
ChatCompletionImageObject,
ChatCompletionTextObject,
)
from litellm.types.llms.vertex_ai import *
from litellm.types.llms.vertex_ai import (
GenerationConfig,
PartType,
RequestBody,
SafetSettingsConfig,
SystemInstructions,
ToolConfig,
Tools,
)
from ..common_utils import (
_check_text_in_content,
get_supports_response_schema,
get_supports_system_message,
)
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
def _process_gemini_image(image_url: str) -> PartType:
"""
Given an image URL, return the appropriate PartType for Gemini
"""
try:
# GCS URIs
if "gs://" in image_url:
# Figure out file type
extension_with_dot = os.path.splitext(image_url)[-1] # Ex: ".png"
extension = extension_with_dot[1:] # Ex: "png"
file_type = get_file_type_from_extension(extension)
# Validate the file type is supported by Gemini
if not is_gemini_1_5_accepted_file_type(file_type):
raise Exception(f"File type not supported by gemini - {file_type}")
mime_type = get_file_mime_type_for_file_type(file_type)
file_data = FileDataType(mime_type=mime_type, file_uri=image_url)
return PartType(file_data=file_data)
elif (
"https://" in image_url
and (image_type := _get_image_mime_type_from_url(image_url)) is not None
):
file_data = FileDataType(file_uri=image_url, mime_type=image_type)
return PartType(file_data=file_data)
elif "http://" in image_url or "https://" in image_url or "base64" in image_url:
# https links for unsupported mime types and base64 images
image = convert_to_anthropic_image_obj(image_url)
_blob = BlobType(data=image["data"], mime_type=image["media_type"])
return PartType(inline_data=_blob)
raise Exception("Invalid image received - {}".format(image_url))
except Exception as e:
raise e
def _get_image_mime_type_from_url(url: str) -> Optional[str]:
"""
Get mime type for common image URLs
See gemini mime types: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/image-understanding#image-requirements
Supported by Gemini:
- PNG (`image/png`)
- JPEG (`image/jpeg`)
- WebP (`image/webp`)
Example:
url = https://example.com/image.jpg
Returns: image/jpeg
"""
url = url.lower()
if url.endswith((".jpg", ".jpeg")):
return "image/jpeg"
elif url.endswith(".png"):
return "image/png"
elif url.endswith(".webp"):
return "image/webp"
elif url.endswith(".mp4"):
return "video/mp4"
elif url.endswith(".pdf"):
return "application/pdf"
return None
def _gemini_convert_messages_with_history( # noqa: PLR0915
messages: List[AllMessageValues],
) -> List[ContentType]:
"""
Converts given messages from OpenAI format to Gemini format
- Parts must be iterable
- Roles must alternate b/w 'user' and 'model' (same as anthropic -> merge consecutive roles)
- Please ensure that function response turn comes immediately after a function call turn
"""
user_message_types = {"user", "system"}
contents: List[ContentType] = []
last_message_with_tool_calls = None
msg_i = 0
tool_call_responses = []
try:
while msg_i < len(messages):
user_content: List[PartType] = []
init_msg_i = msg_i
## MERGE CONSECUTIVE USER CONTENT ##
while (
msg_i < len(messages) and messages[msg_i]["role"] in user_message_types
):
_message_content = messages[msg_i].get("content")
if _message_content is not None and isinstance(_message_content, list):
_parts: List[PartType] = []
for element in _message_content:
if (
element["type"] == "text"
and "text" in element
and len(element["text"]) > 0
):
element = cast(ChatCompletionTextObject, element)
_part = PartType(text=element["text"])
_parts.append(_part)
elif element["type"] == "image_url":
element = cast(ChatCompletionImageObject, element)
img_element = element
if isinstance(img_element["image_url"], dict):
image_url = img_element["image_url"]["url"]
else:
image_url = img_element["image_url"]
_part = _process_gemini_image(image_url=image_url)
_parts.append(_part)
user_content.extend(_parts)
elif (
_message_content is not None
and isinstance(_message_content, str)
and len(_message_content) > 0
):
_part = PartType(text=_message_content)
user_content.append(_part)
msg_i += 1
if user_content:
"""
check that user_content has 'text' parameter.
- Known Vertex Error: Unable to submit request because it must have a text parameter.
- Relevant Issue: https://github.com/BerriAI/litellm/issues/5515
"""
has_text_in_content = _check_text_in_content(user_content)
if has_text_in_content is False:
verbose_logger.warning(
"No text in user content. Adding a blank text to user content, to ensure Gemini doesn't fail the request. Relevant Issue - https://github.com/BerriAI/litellm/issues/5515"
)
user_content.append(
PartType(text=" ")
) # add a blank text, to ensure Gemini doesn't fail the request.
contents.append(ContentType(role="user", parts=user_content))
assistant_content = []
## MERGE CONSECUTIVE ASSISTANT CONTENT ##
while msg_i < len(messages) and messages[msg_i]["role"] == "assistant":
if isinstance(messages[msg_i], BaseModel):
msg_dict: Union[ChatCompletionAssistantMessage, dict] = messages[msg_i].model_dump() # type: ignore
else:
msg_dict = messages[msg_i] # type: ignore
assistant_msg = ChatCompletionAssistantMessage(**msg_dict) # type: ignore
_message_content = assistant_msg.get("content", None)
if _message_content is not None and isinstance(_message_content, list):
_parts = []
for element in _message_content:
if isinstance(element, dict):
if element["type"] == "text":
_part = PartType(text=element["text"])
_parts.append(_part)
assistant_content.extend(_parts)
elif (
_message_content is not None
and isinstance(_message_content, str)
and _message_content
):
assistant_text = _message_content # either string or none
assistant_content.append(PartType(text=assistant_text)) # type: ignore
## HANDLE ASSISTANT FUNCTION CALL
if (
assistant_msg.get("tool_calls", []) is not None
or assistant_msg.get("function_call") is not None
): # support assistant tool invoke conversion
assistant_content.extend(
convert_to_gemini_tool_call_invoke(assistant_msg)
)
last_message_with_tool_calls = assistant_msg
msg_i += 1
if assistant_content:
contents.append(ContentType(role="model", parts=assistant_content))
## APPEND TOOL CALL MESSAGES ##
tool_call_message_roles = ["tool", "function"]
if (
msg_i < len(messages)
and messages[msg_i]["role"] in tool_call_message_roles
):
_part = convert_to_gemini_tool_call_result(
messages[msg_i], last_message_with_tool_calls # type: ignore
)
msg_i += 1
tool_call_responses.append(_part)
if msg_i < len(messages) and (
messages[msg_i]["role"] not in tool_call_message_roles
):
if len(tool_call_responses) > 0:
contents.append(ContentType(parts=tool_call_responses))
tool_call_responses = []
if msg_i == init_msg_i: # prevent infinite loops
raise Exception(
"Invalid Message passed in - {}. File an issue https://github.com/BerriAI/litellm/issues".format(
messages[msg_i]
)
)
if len(tool_call_responses) > 0:
contents.append(ContentType(parts=tool_call_responses))
return contents
except Exception as e:
raise e
def _transform_request_body(
messages: List[AllMessageValues],
model: str,
optional_params: dict,
custom_llm_provider: Literal["vertex_ai", "vertex_ai_beta", "gemini"],
litellm_params: dict,
cached_content: Optional[str],
) -> RequestBody:
"""
Common transformation logic across sync + async Gemini /generateContent calls.
"""
# Separate system prompt from rest of message
supports_system_message = get_supports_system_message(
model=model, custom_llm_provider=custom_llm_provider
)
system_instructions, messages = _transform_system_message(
supports_system_message=supports_system_message, messages=messages
)
# Checks for 'response_schema' support - if passed in
if "response_schema" in optional_params:
supports_response_schema = get_supports_response_schema(
model=model, custom_llm_provider=custom_llm_provider
)
if supports_response_schema is False:
user_response_schema_message = response_schema_prompt(
model=model, response_schema=optional_params.get("response_schema") # type: ignore
)
messages.append({"role": "user", "content": user_response_schema_message})
optional_params.pop("response_schema")
# Check for any 'litellm_param_*' set during optional param mapping
remove_keys = []
for k, v in optional_params.items():
if k.startswith("litellm_param_"):
litellm_params.update({k: v})
remove_keys.append(k)
optional_params = {k: v for k, v in optional_params.items() if k not in remove_keys}
try:
if custom_llm_provider == "gemini":
content = litellm.GoogleAIStudioGeminiConfig()._transform_messages(
messages=messages
)
else:
content = litellm.VertexGeminiConfig()._transform_messages(
messages=messages
)
tools: Optional[Tools] = optional_params.pop("tools", None)
tool_choice: Optional[ToolConfig] = optional_params.pop("tool_choice", None)
safety_settings: Optional[List[SafetSettingsConfig]] = optional_params.pop(
"safety_settings", None
) # type: ignore
config_fields = GenerationConfig.__annotations__.keys()
filtered_params = {
k: v for k, v in optional_params.items() if k in config_fields
}
generation_config: Optional[GenerationConfig] = GenerationConfig(
**filtered_params
)
data = RequestBody(contents=content)
if system_instructions is not None:
data["system_instruction"] = system_instructions
if tools is not None:
data["tools"] = tools
if tool_choice is not None:
data["toolConfig"] = tool_choice
if safety_settings is not None:
data["safetySettings"] = safety_settings
if generation_config is not None:
data["generationConfig"] = generation_config
if cached_content is not None:
data["cachedContent"] = cached_content
except Exception as e:
raise e
return data
def sync_transform_request_body(
gemini_api_key: Optional[str],
messages: List[AllMessageValues],
api_base: Optional[str],
model: str,
client: Optional[HTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
extra_headers: Optional[dict],
optional_params: dict,
logging_obj: LiteLLMLoggingObj,
custom_llm_provider: Literal["vertex_ai", "vertex_ai_beta", "gemini"],
litellm_params: dict,
) -> RequestBody:
from ..context_caching.vertex_ai_context_caching import ContextCachingEndpoints
context_caching_endpoints = ContextCachingEndpoints()
if gemini_api_key is not None:
messages, cached_content = context_caching_endpoints.check_and_create_cache(
messages=messages,
api_key=gemini_api_key,
api_base=api_base,
model=model,
client=client,
timeout=timeout,
extra_headers=extra_headers,
cached_content=optional_params.pop("cached_content", None),
logging_obj=logging_obj,
)
else: # [TODO] implement context caching for gemini as well
cached_content = optional_params.pop("cached_content", None)
return _transform_request_body(
messages=messages,
model=model,
custom_llm_provider=custom_llm_provider,
litellm_params=litellm_params,
cached_content=cached_content,
optional_params=optional_params,
)
async def async_transform_request_body(
gemini_api_key: Optional[str],
messages: List[AllMessageValues],
api_base: Optional[str],
model: str,
client: Optional[AsyncHTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
extra_headers: Optional[dict],
optional_params: dict,
logging_obj: litellm.litellm_core_utils.litellm_logging.Logging, # type: ignore
custom_llm_provider: Literal["vertex_ai", "vertex_ai_beta", "gemini"],
litellm_params: dict,
) -> RequestBody:
from ..context_caching.vertex_ai_context_caching import ContextCachingEndpoints
context_caching_endpoints = ContextCachingEndpoints()
if gemini_api_key is not None:
messages, cached_content = (
await context_caching_endpoints.async_check_and_create_cache(
messages=messages,
api_key=gemini_api_key,
api_base=api_base,
model=model,
client=client,
timeout=timeout,
extra_headers=extra_headers,
cached_content=optional_params.pop("cached_content", None),
logging_obj=logging_obj,
)
)
else: # [TODO] implement context caching for gemini as well
cached_content = optional_params.pop("cached_content", None)
return _transform_request_body(
messages=messages,
model=model,
custom_llm_provider=custom_llm_provider,
litellm_params=litellm_params,
cached_content=cached_content,
optional_params=optional_params,
)
def _transform_system_message(
supports_system_message: bool, messages: List[AllMessageValues]
) -> Tuple[Optional[SystemInstructions], List[AllMessageValues]]:
"""
Extracts the system message from the openai message list.
Converts the system message to Gemini format
Returns
- system_content_blocks: Optional[SystemInstructions] - the system message list in Gemini format.
- messages: List[AllMessageValues] - filtered list of messages in OpenAI format (transformed separately)
"""
# Separate system prompt from rest of message
system_prompt_indices = []
system_content_blocks: List[PartType] = []
if supports_system_message is True:
for idx, message in enumerate(messages):
if message["role"] == "system":
_system_content_block: Optional[PartType] = None
if isinstance(message["content"], str):
_system_content_block = PartType(text=message["content"])
elif isinstance(message["content"], list):
system_text = ""
for content in message["content"]:
system_text += content.get("text") or ""
_system_content_block = PartType(text=system_text)
if _system_content_block is not None:
system_content_blocks.append(_system_content_block)
system_prompt_indices.append(idx)
if len(system_prompt_indices) > 0:
for idx in reversed(system_prompt_indices):
messages.pop(idx)
if len(system_content_blocks) > 0:
return SystemInstructions(parts=system_content_blocks), messages
return None, messages
|