File size: 7,642 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import json
from typing import AsyncIterator, Iterator, List, Optional, Union

import httpx

from litellm import verbose_logger
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.types.utils import GenericStreamingChunk as GChunk
from litellm.types.utils import StreamingChatCompletionChunk

_response_stream_shape_cache = None


class SagemakerError(BaseLLMException):
    def __init__(
        self,
        status_code: int,
        message: str,
        headers: Optional[Union[dict, httpx.Headers]] = None,
    ):
        super().__init__(status_code=status_code, message=message, headers=headers)


class AWSEventStreamDecoder:
    def __init__(self, model: str, is_messages_api: Optional[bool] = None) -> None:
        from botocore.parsers import EventStreamJSONParser

        self.model = model
        self.parser = EventStreamJSONParser()
        self.content_blocks: List = []
        self.is_messages_api = is_messages_api

    def _chunk_parser_messages_api(
        self, chunk_data: dict
    ) -> StreamingChatCompletionChunk:

        openai_chunk = StreamingChatCompletionChunk(**chunk_data)

        return openai_chunk

    def _chunk_parser(self, chunk_data: dict) -> GChunk:
        verbose_logger.debug("in sagemaker chunk parser, chunk_data %s", chunk_data)
        _token = chunk_data.get("token", {}) or {}
        _index = chunk_data.get("index", None) or 0
        is_finished = False
        finish_reason = ""

        _text = _token.get("text", "")
        if _text == "<|endoftext|>":
            return GChunk(
                text="",
                index=_index,
                is_finished=True,
                finish_reason="stop",
                usage=None,
            )

        return GChunk(
            text=_text,
            index=_index,
            is_finished=is_finished,
            finish_reason=finish_reason,
            usage=None,
        )

    def iter_bytes(
        self, iterator: Iterator[bytes]
    ) -> Iterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
        """Given an iterator that yields lines, iterate over it & yield every event encountered"""
        from botocore.eventstream import EventStreamBuffer

        event_stream_buffer = EventStreamBuffer()
        accumulated_json = ""

        for chunk in iterator:
            event_stream_buffer.add_data(chunk)
            for event in event_stream_buffer:
                message = self._parse_message_from_event(event)
                if message:
                    # remove data: prefix and "\n\n" at the end
                    message = message.replace("data:", "").replace("\n\n", "")

                    # Accumulate JSON data
                    accumulated_json += message

                    # Try to parse the accumulated JSON
                    try:
                        _data = json.loads(accumulated_json)
                        if self.is_messages_api:
                            yield self._chunk_parser_messages_api(chunk_data=_data)
                        else:
                            yield self._chunk_parser(chunk_data=_data)
                        # Reset accumulated_json after successful parsing
                        accumulated_json = ""
                    except json.JSONDecodeError:
                        # If it's not valid JSON yet, continue to the next event
                        continue

        # Handle any remaining data after the iterator is exhausted
        if accumulated_json:
            try:
                _data = json.loads(accumulated_json)
                if self.is_messages_api:
                    yield self._chunk_parser_messages_api(chunk_data=_data)
                else:
                    yield self._chunk_parser(chunk_data=_data)
            except json.JSONDecodeError:
                # Handle or log any unparseable data at the end
                verbose_logger.error(
                    f"Warning: Unparseable JSON data remained: {accumulated_json}"
                )
                yield None

    async def aiter_bytes(
        self, iterator: AsyncIterator[bytes]
    ) -> AsyncIterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
        """Given an async iterator that yields lines, iterate over it & yield every event encountered"""
        from botocore.eventstream import EventStreamBuffer

        event_stream_buffer = EventStreamBuffer()
        accumulated_json = ""

        async for chunk in iterator:
            event_stream_buffer.add_data(chunk)
            for event in event_stream_buffer:
                message = self._parse_message_from_event(event)
                if message:
                    verbose_logger.debug("sagemaker  parsed chunk bytes %s", message)
                    # remove data: prefix and "\n\n" at the end
                    message = message.replace("data:", "").replace("\n\n", "")

                    # Accumulate JSON data
                    accumulated_json += message

                    # Try to parse the accumulated JSON
                    try:
                        _data = json.loads(accumulated_json)
                        if self.is_messages_api:
                            yield self._chunk_parser_messages_api(chunk_data=_data)
                        else:
                            yield self._chunk_parser(chunk_data=_data)
                        # Reset accumulated_json after successful parsing
                        accumulated_json = ""
                    except json.JSONDecodeError:
                        # If it's not valid JSON yet, continue to the next event
                        continue

        # Handle any remaining data after the iterator is exhausted
        if accumulated_json:
            try:
                _data = json.loads(accumulated_json)
                if self.is_messages_api:
                    yield self._chunk_parser_messages_api(chunk_data=_data)
                else:
                    yield self._chunk_parser(chunk_data=_data)
            except json.JSONDecodeError:
                # Handle or log any unparseable data at the end
                verbose_logger.error(
                    f"Warning: Unparseable JSON data remained: {accumulated_json}"
                )
                yield None

    def _parse_message_from_event(self, event) -> Optional[str]:
        response_dict = event.to_response_dict()
        parsed_response = self.parser.parse(response_dict, get_response_stream_shape())

        if response_dict["status_code"] != 200:
            raise ValueError(f"Bad response code, expected 200: {response_dict}")

        if "chunk" in parsed_response:
            chunk = parsed_response.get("chunk")
            if not chunk:
                return None
            return chunk.get("bytes").decode()  # type: ignore[no-any-return]
        else:
            chunk = response_dict.get("body")
            if not chunk:
                return None

            return chunk.decode()  # type: ignore[no-any-return]


def get_response_stream_shape():
    global _response_stream_shape_cache
    if _response_stream_shape_cache is None:

        from botocore.loaders import Loader
        from botocore.model import ServiceModel

        loader = Loader()
        sagemaker_service_dict = loader.load_service_model(
            "sagemaker-runtime", "service-2"
        )
        sagemaker_service_model = ServiceModel(sagemaker_service_dict)
        _response_stream_shape_cache = sagemaker_service_model.shape_for(
            "InvokeEndpointWithResponseStreamOutput"
        )
    return _response_stream_shape_cache