File size: 10,757 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import asyncio
import json
import time
from typing import Callable, List, Union
import litellm
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
_get_httpx_client,
get_async_httpx_client,
)
from litellm.types.llms.openai import AllMessageValues
from litellm.utils import CustomStreamWrapper, ModelResponse
from ..common_utils import ReplicateError
from .transformation import ReplicateConfig
replicate_config = ReplicateConfig()
# Function to handle prediction response (streaming)
def handle_prediction_response_streaming(
prediction_url, api_token, print_verbose, headers: dict, http_client: HTTPHandler
):
previous_output = ""
output_string = ""
status = ""
while True and (status not in ["succeeded", "failed", "canceled"]):
time.sleep(0.5) # prevent being rate limited by replicate
print_verbose(f"replicate: polling endpoint: {prediction_url}")
response = http_client.get(prediction_url, headers=headers)
if response.status_code == 200:
response_data = response.json()
status = response_data["status"]
if "output" in response_data:
try:
output_string = "".join(response_data["output"])
except Exception:
raise ReplicateError(
status_code=422,
message="Unable to parse response. Got={}".format(
response_data["output"]
),
headers=response.headers,
)
new_output = output_string[len(previous_output) :]
print_verbose(f"New chunk: {new_output}")
yield {"output": new_output, "status": status}
previous_output = output_string
status = response_data["status"]
if status == "failed":
replicate_error = response_data.get("error", "")
raise ReplicateError(
status_code=400,
message=f"Error: {replicate_error}",
headers=response.headers,
)
else:
# this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed"
print_verbose(
f"Replicate: Failed to fetch prediction status and output.{response.status_code}{response.text}"
)
# Function to handle prediction response (streaming)
async def async_handle_prediction_response_streaming(
prediction_url,
api_token,
print_verbose,
headers: dict,
http_client: AsyncHTTPHandler,
):
previous_output = ""
output_string = ""
status = ""
while True and (status not in ["succeeded", "failed", "canceled"]):
await asyncio.sleep(0.5) # prevent being rate limited by replicate
print_verbose(f"replicate: polling endpoint: {prediction_url}")
response = await http_client.get(prediction_url, headers=headers)
if response.status_code == 200:
response_data = response.json()
status = response_data["status"]
if "output" in response_data:
try:
output_string = "".join(response_data["output"])
except Exception:
raise ReplicateError(
status_code=422,
message="Unable to parse response. Got={}".format(
response_data["output"]
),
headers=response.headers,
)
new_output = output_string[len(previous_output) :]
print_verbose(f"New chunk: {new_output}")
yield {"output": new_output, "status": status}
previous_output = output_string
status = response_data["status"]
if status == "failed":
replicate_error = response_data.get("error", "")
raise ReplicateError(
status_code=400,
message=f"Error: {replicate_error}",
headers=response.headers,
)
else:
# this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed"
print_verbose(
f"Replicate: Failed to fetch prediction status and output.{response.status_code}{response.text}"
)
# Main function for prediction completion
def completion(
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
optional_params: dict,
litellm_params: dict,
logging_obj,
api_key,
encoding,
custom_prompt_dict={},
logger_fn=None,
acompletion=None,
headers={},
) -> Union[ModelResponse, CustomStreamWrapper]:
headers = replicate_config.validate_environment(
api_key=api_key,
headers=headers,
model=model,
messages=messages,
optional_params=optional_params,
)
# Start a prediction and get the prediction URL
version_id = replicate_config.model_to_version_id(model)
input_data = replicate_config.transform_request(
model=model,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
if acompletion is not None and acompletion is True:
return async_completion(
model_response=model_response,
model=model,
encoding=encoding,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
version_id=version_id,
input_data=input_data,
api_key=api_key,
api_base=api_base,
logging_obj=logging_obj,
print_verbose=print_verbose,
headers=headers,
) # type: ignore
## COMPLETION CALL
model_response.created = int(
time.time()
) # for pricing this must remain right before calling api
prediction_url = replicate_config.get_complete_url(
api_base=api_base, model=model, optional_params=optional_params
)
## COMPLETION CALL
httpx_client = _get_httpx_client(
params={"timeout": 600.0},
)
response = httpx_client.post(
url=prediction_url,
headers=headers,
data=json.dumps(input_data),
)
prediction_url = replicate_config.get_prediction_url(response)
# Handle the prediction response (streaming or non-streaming)
if "stream" in optional_params and optional_params["stream"] is True:
print_verbose("streaming request")
_response = handle_prediction_response_streaming(
prediction_url,
api_key,
print_verbose,
headers=headers,
http_client=httpx_client,
)
return CustomStreamWrapper(_response, model, logging_obj=logging_obj, custom_llm_provider="replicate") # type: ignore
else:
for retry in range(litellm.DEFAULT_REPLICATE_POLLING_RETRIES):
time.sleep(
litellm.DEFAULT_REPLICATE_POLLING_DELAY_SECONDS + 2 * retry
) # wait to allow response to be generated by replicate - else partial output is generated with status=="processing"
response = httpx_client.get(url=prediction_url, headers=headers)
if (
response.status_code == 200
and response.json().get("status") == "processing"
):
continue
return litellm.ReplicateConfig().transform_response(
model=model,
raw_response=response,
model_response=model_response,
logging_obj=logging_obj,
api_key=api_key,
request_data=input_data,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
encoding=encoding,
)
raise ReplicateError(
status_code=500,
message="No response received from Replicate API after max retries",
headers=None,
)
async def async_completion(
model_response: ModelResponse,
model: str,
messages: List[AllMessageValues],
encoding,
optional_params: dict,
litellm_params: dict,
version_id,
input_data,
api_key,
api_base,
logging_obj,
print_verbose,
headers: dict,
) -> Union[ModelResponse, CustomStreamWrapper]:
prediction_url = replicate_config.get_complete_url(
api_base=api_base, model=model, optional_params=optional_params
)
async_handler = get_async_httpx_client(
llm_provider=litellm.LlmProviders.REPLICATE,
params={"timeout": 600.0},
)
response = await async_handler.post(
url=prediction_url, headers=headers, data=json.dumps(input_data)
)
prediction_url = replicate_config.get_prediction_url(response)
if "stream" in optional_params and optional_params["stream"] is True:
_response = async_handle_prediction_response_streaming(
prediction_url,
api_key,
print_verbose,
headers=headers,
http_client=async_handler,
)
return CustomStreamWrapper(_response, model, logging_obj=logging_obj, custom_llm_provider="replicate") # type: ignore
for retry in range(litellm.DEFAULT_REPLICATE_POLLING_RETRIES):
await asyncio.sleep(
litellm.DEFAULT_REPLICATE_POLLING_DELAY_SECONDS + 2 * retry
) # wait to allow response to be generated by replicate - else partial output is generated with status=="processing"
response = await async_handler.get(url=prediction_url, headers=headers)
if (
response.status_code == 200
and response.json().get("status") == "processing"
):
continue
return litellm.ReplicateConfig().transform_response(
model=model,
raw_response=response,
model_response=model_response,
logging_obj=logging_obj,
api_key=api_key,
request_data=input_data,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
encoding=encoding,
)
# Add a fallback return if no response is received after max retries
raise ReplicateError(
status_code=500,
message="No response received from Replicate API after max retries",
headers=None,
)
|