File size: 7,673 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from typing import Optional, Union
import httpx
from openai import AsyncOpenAI, OpenAI
from pydantic import BaseModel
import litellm
from litellm.litellm_core_utils.audio_utils.utils import get_audio_file_name
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.types.utils import FileTypes
from litellm.utils import (
TranscriptionResponse,
convert_to_model_response_object,
extract_duration_from_srt_or_vtt,
)
from ..openai import OpenAIChatCompletion
class OpenAIAudioTranscription(OpenAIChatCompletion):
# Audio Transcriptions
async def make_openai_audio_transcriptions_request(
self,
openai_aclient: AsyncOpenAI,
data: dict,
timeout: Union[float, httpx.Timeout],
):
"""
Helper to:
- call openai_aclient.audio.transcriptions.with_raw_response when litellm.return_response_headers is True
- call openai_aclient.audio.transcriptions.create by default
"""
try:
raw_response = (
await openai_aclient.audio.transcriptions.with_raw_response.create(
**data, timeout=timeout
)
) # type: ignore
headers = dict(raw_response.headers)
response = raw_response.parse()
return headers, response
except Exception as e:
raise e
def make_sync_openai_audio_transcriptions_request(
self,
openai_client: OpenAI,
data: dict,
timeout: Union[float, httpx.Timeout],
):
"""
Helper to:
- call openai_aclient.audio.transcriptions.with_raw_response when litellm.return_response_headers is True
- call openai_aclient.audio.transcriptions.create by default
"""
try:
if litellm.return_response_headers is True:
raw_response = (
openai_client.audio.transcriptions.with_raw_response.create(
**data, timeout=timeout
)
) # type: ignore
headers = dict(raw_response.headers)
response = raw_response.parse()
return headers, response
else:
response = openai_client.audio.transcriptions.create(**data, timeout=timeout) # type: ignore
return None, response
except Exception as e:
raise e
def audio_transcriptions(
self,
model: str,
audio_file: FileTypes,
optional_params: dict,
model_response: TranscriptionResponse,
timeout: float,
max_retries: int,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str],
api_base: Optional[str],
client=None,
atranscription: bool = False,
) -> TranscriptionResponse:
data = {"model": model, "file": audio_file, **optional_params}
if "response_format" not in data or (
data["response_format"] == "text" or data["response_format"] == "json"
):
data["response_format"] = (
"verbose_json" # ensures 'duration' is received - used for cost calculation
)
if atranscription is True:
return self.async_audio_transcriptions( # type: ignore
audio_file=audio_file,
data=data,
model_response=model_response,
timeout=timeout,
api_key=api_key,
api_base=api_base,
client=client,
max_retries=max_retries,
logging_obj=logging_obj,
)
openai_client: OpenAI = self._get_openai_client( # type: ignore
is_async=False,
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
)
## LOGGING
logging_obj.pre_call(
input=None,
api_key=openai_client.api_key,
additional_args={
"api_base": openai_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
)
_, response = self.make_sync_openai_audio_transcriptions_request(
openai_client=openai_client,
data=data,
timeout=timeout,
)
if isinstance(response, BaseModel):
stringified_response = response.model_dump()
else:
stringified_response = TranscriptionResponse(text=response).model_dump()
## LOGGING
logging_obj.post_call(
input=get_audio_file_name(audio_file),
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "openai"}
final_response: TranscriptionResponse = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
return final_response
async def async_audio_transcriptions(
self,
audio_file: FileTypes,
data: dict,
model_response: TranscriptionResponse,
timeout: float,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
max_retries=None,
):
try:
openai_aclient: AsyncOpenAI = self._get_openai_client( # type: ignore
is_async=True,
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
client=client,
)
## LOGGING
logging_obj.pre_call(
input=None,
api_key=openai_aclient.api_key,
additional_args={
"api_base": openai_aclient._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
)
headers, response = await self.make_openai_audio_transcriptions_request(
openai_aclient=openai_aclient,
data=data,
timeout=timeout,
)
logging_obj.model_call_details["response_headers"] = headers
if isinstance(response, BaseModel):
stringified_response = response.model_dump()
else:
duration = extract_duration_from_srt_or_vtt(response)
stringified_response = TranscriptionResponse(text=response).model_dump()
stringified_response["duration"] = duration
## LOGGING
logging_obj.post_call(
input=get_audio_file_name(audio_file),
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "openai"}
return convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e
|