File size: 5,751 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""
Support for o1/o3 model family 

https://platform.openai.com/docs/guides/reasoning

Translations handled by LiteLLM:
- modalities: image => drop param (if user opts in to dropping param)  
- role: system ==> translate to role 'user' 
- streaming => faked by LiteLLM 
- Tools, response_format =>  drop param (if user opts in to dropping param) 
- Logprobs => drop param (if user opts in to dropping param) 
"""

from typing import List, Optional

import litellm
from litellm import verbose_logger
from litellm.litellm_core_utils.get_llm_provider_logic import get_llm_provider
from litellm.types.llms.openai import AllMessageValues, ChatCompletionUserMessage
from litellm.utils import (
    supports_function_calling,
    supports_response_schema,
    supports_system_messages,
)

from .gpt_transformation import OpenAIGPTConfig


class OpenAIOSeriesConfig(OpenAIGPTConfig):
    """
    Reference: https://platform.openai.com/docs/guides/reasoning
    """

    @classmethod
    def get_config(cls):
        return super().get_config()

    def translate_developer_role_to_system_role(
        self, messages: List[AllMessageValues]
    ) -> List[AllMessageValues]:
        """
        O-series models support `developer` role.
        """
        return messages

    def should_fake_stream(
        self,
        model: Optional[str],
        stream: Optional[bool],
        custom_llm_provider: Optional[str] = None,
    ) -> bool:
        if stream is not True:
            return False

        if model is None:
            return True
        supported_stream_models = ["o1-mini", "o1-preview"]
        for supported_model in supported_stream_models:
            if supported_model in model:
                return False
        return True

    def get_supported_openai_params(self, model: str) -> list:
        """
        Get the supported OpenAI params for the given model

        """

        all_openai_params = super().get_supported_openai_params(model=model)
        non_supported_params = [
            "logprobs",
            "top_p",
            "presence_penalty",
            "frequency_penalty",
            "top_logprobs",
        ]

        o_series_only_param = ["reasoning_effort"]

        all_openai_params.extend(o_series_only_param)

        try:
            model, custom_llm_provider, api_base, api_key = get_llm_provider(
                model=model
            )
        except Exception:
            verbose_logger.debug(
                f"Unable to infer model provider for model={model}, defaulting to openai for o1 supported param check"
            )
            custom_llm_provider = "openai"

        _supports_function_calling = supports_function_calling(
            model, custom_llm_provider
        )
        _supports_response_schema = supports_response_schema(model, custom_llm_provider)

        if not _supports_function_calling:
            non_supported_params.append("tools")
            non_supported_params.append("tool_choice")
            non_supported_params.append("parallel_tool_calls")
            non_supported_params.append("function_call")
            non_supported_params.append("functions")

        if not _supports_response_schema:
            non_supported_params.append("response_format")

        return [
            param for param in all_openai_params if param not in non_supported_params
        ]

    def map_openai_params(
        self,
        non_default_params: dict,
        optional_params: dict,
        model: str,
        drop_params: bool,
    ):
        if "max_tokens" in non_default_params:
            optional_params["max_completion_tokens"] = non_default_params.pop(
                "max_tokens"
            )
        if "temperature" in non_default_params:
            temperature_value: Optional[float] = non_default_params.pop("temperature")
            if temperature_value is not None:
                if temperature_value == 1:
                    optional_params["temperature"] = temperature_value
                else:
                    ## UNSUPPORTED TOOL CHOICE VALUE
                    if litellm.drop_params is True or drop_params is True:
                        pass
                    else:
                        raise litellm.utils.UnsupportedParamsError(
                            message="O-series models don't support temperature={}. Only temperature=1 is supported. To drop unsupported openai params from the call, set `litellm.drop_params = True`".format(
                                temperature_value
                            ),
                            status_code=400,
                        )

        return super()._map_openai_params(
            non_default_params, optional_params, model, drop_params
        )

    def is_model_o_series_model(self, model: str) -> bool:
        if model in litellm.open_ai_chat_completion_models and (
            "o1" in model or "o3" in model
        ):
            return True
        return False

    def _transform_messages(
        self, messages: List[AllMessageValues], model: str
    ) -> List[AllMessageValues]:
        """
        Handles limitations of O-1 model family.
        - modalities: image => drop param (if user opts in to dropping param)
        - role: system ==> translate to role 'user'
        """
        _supports_system_messages = supports_system_messages(model, "openai")
        for i, message in enumerate(messages):
            if message["role"] == "system" and not _supports_system_messages:
                new_message = ChatCompletionUserMessage(
                    content=message["content"], role="user"
                )
                messages[i] = new_message  # Replace the old message with the new one

        return messages