File size: 7,942 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import json
import time
from typing import TYPE_CHECKING, Any, List, Optional, Union
import httpx
from litellm.litellm_core_utils.prompt_templates.common_utils import (
convert_content_list_to_str,
)
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.types.llms.openai import AllMessageValues
from litellm.utils import ModelResponse, Usage
from ..common_utils import NLPCloudError
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
LoggingClass = LiteLLMLoggingObj
else:
LoggingClass = Any
class NLPCloudConfig(BaseConfig):
"""
Reference: https://docs.nlpcloud.com/#generation
- `max_length` (int): Optional. The maximum number of tokens that the generated text should contain.
- `length_no_input` (boolean): Optional. Whether `min_length` and `max_length` should not include the length of the input text.
- `end_sequence` (string): Optional. A specific token that should be the end of the generated sequence.
- `remove_end_sequence` (boolean): Optional. Whether to remove the `end_sequence` string from the result.
- `remove_input` (boolean): Optional. Whether to remove the input text from the result.
- `bad_words` (list of strings): Optional. List of tokens that are not allowed to be generated.
- `temperature` (float): Optional. Temperature sampling. It modulates the next token probabilities.
- `top_p` (float): Optional. Top P sampling. Below 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.
- `top_k` (int): Optional. Top K sampling. The number of highest probability vocabulary tokens to keep for top k filtering.
- `repetition_penalty` (float): Optional. Prevents the same word from being repeated too many times.
- `num_beams` (int): Optional. Number of beams for beam search.
- `num_return_sequences` (int): Optional. The number of independently computed returned sequences.
"""
max_length: Optional[int] = None
length_no_input: Optional[bool] = None
end_sequence: Optional[str] = None
remove_end_sequence: Optional[bool] = None
remove_input: Optional[bool] = None
bad_words: Optional[list] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
repetition_penalty: Optional[float] = None
num_beams: Optional[int] = None
num_return_sequences: Optional[int] = None
def __init__(
self,
max_length: Optional[int] = None,
length_no_input: Optional[bool] = None,
end_sequence: Optional[str] = None,
remove_end_sequence: Optional[bool] = None,
remove_input: Optional[bool] = None,
bad_words: Optional[list] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
top_k: Optional[int] = None,
repetition_penalty: Optional[float] = None,
num_beams: Optional[int] = None,
num_return_sequences: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
headers = {
"accept": "application/json",
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Token {api_key}"
return headers
def get_supported_openai_params(self, model: str) -> List:
return [
"max_tokens",
"stream",
"temperature",
"top_p",
"presence_penalty",
"frequency_penalty",
"n",
"stop",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_length"] = value
if param == "stream":
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "presence_penalty":
optional_params["presence_penalty"] = value
if param == "frequency_penalty":
optional_params["frequency_penalty"] = value
if param == "n":
optional_params["num_return_sequences"] = value
if param == "stop":
optional_params["stop_sequences"] = value
return optional_params
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
return NLPCloudError(
status_code=status_code, message=error_message, headers=headers
)
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
text = " ".join(convert_content_list_to_str(message) for message in messages)
data = {
"text": text,
**optional_params,
}
return data
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LoggingClass,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
## LOGGING
logging_obj.post_call(
input=None,
api_key=api_key,
original_response=raw_response.text,
additional_args={"complete_input_dict": request_data},
)
## RESPONSE OBJECT
try:
completion_response = raw_response.json()
except Exception:
raise NLPCloudError(
message=raw_response.text, status_code=raw_response.status_code
)
if "error" in completion_response:
raise NLPCloudError(
message=completion_response["error"],
status_code=raw_response.status_code,
)
else:
try:
if len(completion_response["generated_text"]) > 0:
model_response.choices[0].message.content = ( # type: ignore
completion_response["generated_text"]
)
except Exception:
raise NLPCloudError(
message=json.dumps(completion_response),
status_code=raw_response.status_code,
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = completion_response["nb_input_tokens"]
completion_tokens = completion_response["nb_generated_tokens"]
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
|