File size: 7,942 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import json
import time
from typing import TYPE_CHECKING, Any, List, Optional, Union

import httpx

from litellm.litellm_core_utils.prompt_templates.common_utils import (
    convert_content_list_to_str,
)
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.types.llms.openai import AllMessageValues
from litellm.utils import ModelResponse, Usage

from ..common_utils import NLPCloudError

if TYPE_CHECKING:
    from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj

    LoggingClass = LiteLLMLoggingObj
else:
    LoggingClass = Any


class NLPCloudConfig(BaseConfig):
    """
    Reference: https://docs.nlpcloud.com/#generation

    - `max_length` (int): Optional. The maximum number of tokens that the generated text should contain.

    - `length_no_input` (boolean): Optional. Whether `min_length` and `max_length` should not include the length of the input text.

    - `end_sequence` (string): Optional. A specific token that should be the end of the generated sequence.

    - `remove_end_sequence` (boolean): Optional. Whether to remove the `end_sequence` string from the result.

    - `remove_input` (boolean): Optional. Whether to remove the input text from the result.

    - `bad_words` (list of strings): Optional. List of tokens that are not allowed to be generated.

    - `temperature` (float): Optional. Temperature sampling. It modulates the next token probabilities.

    - `top_p` (float): Optional. Top P sampling. Below 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.

    - `top_k` (int): Optional. Top K sampling. The number of highest probability vocabulary tokens to keep for top k filtering.

    - `repetition_penalty` (float): Optional. Prevents the same word from being repeated too many times.

    - `num_beams` (int): Optional. Number of beams for beam search.

    - `num_return_sequences` (int): Optional. The number of independently computed returned sequences.
    """

    max_length: Optional[int] = None
    length_no_input: Optional[bool] = None
    end_sequence: Optional[str] = None
    remove_end_sequence: Optional[bool] = None
    remove_input: Optional[bool] = None
    bad_words: Optional[list] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    top_k: Optional[int] = None
    repetition_penalty: Optional[float] = None
    num_beams: Optional[int] = None
    num_return_sequences: Optional[int] = None

    def __init__(
        self,
        max_length: Optional[int] = None,
        length_no_input: Optional[bool] = None,
        end_sequence: Optional[str] = None,
        remove_end_sequence: Optional[bool] = None,
        remove_input: Optional[bool] = None,
        bad_words: Optional[list] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        top_k: Optional[int] = None,
        repetition_penalty: Optional[float] = None,
        num_beams: Optional[int] = None,
        num_return_sequences: Optional[int] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return super().get_config()

    def validate_environment(
        self,
        headers: dict,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
    ) -> dict:
        headers = {
            "accept": "application/json",
            "content-type": "application/json",
        }
        if api_key:
            headers["Authorization"] = f"Token {api_key}"
        return headers

    def get_supported_openai_params(self, model: str) -> List:
        return [
            "max_tokens",
            "stream",
            "temperature",
            "top_p",
            "presence_penalty",
            "frequency_penalty",
            "n",
            "stop",
        ]

    def map_openai_params(
        self,
        non_default_params: dict,
        optional_params: dict,
        model: str,
        drop_params: bool,
    ) -> dict:
        for param, value in non_default_params.items():
            if param == "max_tokens":
                optional_params["max_length"] = value
            if param == "stream":
                optional_params["stream"] = value
            if param == "temperature":
                optional_params["temperature"] = value
            if param == "top_p":
                optional_params["top_p"] = value
            if param == "presence_penalty":
                optional_params["presence_penalty"] = value
            if param == "frequency_penalty":
                optional_params["frequency_penalty"] = value
            if param == "n":
                optional_params["num_return_sequences"] = value
            if param == "stop":
                optional_params["stop_sequences"] = value
        return optional_params

    def get_error_class(
        self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
    ) -> BaseLLMException:
        return NLPCloudError(
            status_code=status_code, message=error_message, headers=headers
        )

    def transform_request(
        self,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        headers: dict,
    ) -> dict:
        text = " ".join(convert_content_list_to_str(message) for message in messages)

        data = {
            "text": text,
            **optional_params,
        }

        return data

    def transform_response(
        self,
        model: str,
        raw_response: httpx.Response,
        model_response: ModelResponse,
        logging_obj: LoggingClass,
        request_data: dict,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        encoding: Any,
        api_key: Optional[str] = None,
        json_mode: Optional[bool] = None,
    ) -> ModelResponse:
        ## LOGGING
        logging_obj.post_call(
            input=None,
            api_key=api_key,
            original_response=raw_response.text,
            additional_args={"complete_input_dict": request_data},
        )

        ## RESPONSE OBJECT
        try:
            completion_response = raw_response.json()
        except Exception:
            raise NLPCloudError(
                message=raw_response.text, status_code=raw_response.status_code
            )
        if "error" in completion_response:
            raise NLPCloudError(
                message=completion_response["error"],
                status_code=raw_response.status_code,
            )
        else:
            try:
                if len(completion_response["generated_text"]) > 0:
                    model_response.choices[0].message.content = (  # type: ignore
                        completion_response["generated_text"]
                    )
            except Exception:
                raise NLPCloudError(
                    message=json.dumps(completion_response),
                    status_code=raw_response.status_code,
                )

        ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
        prompt_tokens = completion_response["nb_input_tokens"]
        completion_tokens = completion_response["nb_generated_tokens"]

        model_response.created = int(time.time())
        model_response.model = model
        usage = Usage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=prompt_tokens + completion_tokens,
        )
        setattr(model_response, "usage", usage)
        return model_response