File size: 1,319 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from typing import Literal, Optional, Union

import httpx

from litellm.llms.base_llm.chat.transformation import BaseLLMException


class HuggingfaceError(BaseLLMException):
    def __init__(
        self,
        status_code: int,
        message: str,
        headers: Optional[Union[dict, httpx.Headers]] = None,
    ):
        super().__init__(status_code=status_code, message=message, headers=headers)


hf_tasks = Literal[
    "text-generation-inference",
    "conversational",
    "text-classification",
    "text-generation",
]

hf_task_list = [
    "text-generation-inference",
    "conversational",
    "text-classification",
    "text-generation",
]


def output_parser(generated_text: str):
    """
    Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.

    Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
    """
    chat_template_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"]
    for token in chat_template_tokens:
        if generated_text.strip().startswith(token):
            generated_text = generated_text.replace(token, "", 1)
        if generated_text.endswith(token):
            generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
    return generated_text