File size: 75,831 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 |
import asyncio
import collections.abc
import json
import threading
import time
import traceback
import uuid
from typing import Any, Callable, Dict, List, Optional, cast
import httpx
from pydantic import BaseModel
import litellm
from litellm import verbose_logger
from litellm.litellm_core_utils.redact_messages import LiteLLMLoggingObject
from litellm.litellm_core_utils.thread_pool_executor import executor
from litellm.types.utils import Delta
from litellm.types.utils import GenericStreamingChunk as GChunk
from litellm.types.utils import (
ModelResponse,
ModelResponseStream,
StreamingChoices,
Usage,
)
from ..exceptions import OpenAIError
from .core_helpers import map_finish_reason, process_response_headers
from .exception_mapping_utils import exception_type
from .llm_response_utils.get_api_base import get_api_base
from .rules import Rules
def is_async_iterable(obj: Any) -> bool:
"""
Check if an object is an async iterable (can be used with 'async for').
Args:
obj: Any Python object to check
Returns:
bool: True if the object is async iterable, False otherwise
"""
return isinstance(obj, collections.abc.AsyncIterable)
def print_verbose(print_statement):
try:
if litellm.set_verbose:
print(print_statement) # noqa
except Exception:
pass
class CustomStreamWrapper:
def __init__(
self,
completion_stream,
model,
logging_obj: Any,
custom_llm_provider: Optional[str] = None,
stream_options=None,
make_call: Optional[Callable] = None,
_response_headers: Optional[dict] = None,
):
self.model = model
self.make_call = make_call
self.custom_llm_provider = custom_llm_provider
self.logging_obj: LiteLLMLoggingObject = logging_obj
self.completion_stream = completion_stream
self.sent_first_chunk = False
self.sent_last_chunk = False
self.system_fingerprint: Optional[str] = None
self.received_finish_reason: Optional[str] = None
self.intermittent_finish_reason: Optional[str] = (
None # finish reasons that show up mid-stream
)
self.special_tokens = [
"<|assistant|>",
"<|system|>",
"<|user|>",
"<s>",
"</s>",
"<|im_end|>",
"<|im_start|>",
]
self.holding_chunk = ""
self.complete_response = ""
self.response_uptil_now = ""
_model_info = (
self.logging_obj.model_call_details.get("litellm_params", {}).get(
"model_info", {}
)
or {}
)
_api_base = get_api_base(
model=model or "",
optional_params=self.logging_obj.model_call_details.get(
"litellm_params", {}
),
)
self._hidden_params = {
"model_id": (_model_info.get("id", None)),
"api_base": _api_base,
} # returned as x-litellm-model-id response header in proxy
self._hidden_params["additional_headers"] = process_response_headers(
_response_headers or {}
) # GUARANTEE OPENAI HEADERS IN RESPONSE
self._response_headers = _response_headers
self.response_id = None
self.logging_loop = None
self.rules = Rules()
self.stream_options = stream_options or getattr(
logging_obj, "stream_options", None
)
self.messages = getattr(logging_obj, "messages", None)
self.sent_stream_usage = False
self.send_stream_usage = (
True if self.check_send_stream_usage(self.stream_options) else False
)
self.tool_call = False
self.chunks: List = (
[]
) # keep track of the returned chunks - used for calculating the input/output tokens for stream options
self.is_function_call = self.check_is_function_call(logging_obj=logging_obj)
def __iter__(self):
return self
def __aiter__(self):
return self
def check_send_stream_usage(self, stream_options: Optional[dict]):
return (
stream_options is not None
and stream_options.get("include_usage", False) is True
)
def check_is_function_call(self, logging_obj) -> bool:
if hasattr(logging_obj, "optional_params") and isinstance(
logging_obj.optional_params, dict
):
if (
"litellm_param_is_function_call" in logging_obj.optional_params
and logging_obj.optional_params["litellm_param_is_function_call"]
is True
):
return True
return False
def process_chunk(self, chunk: str):
"""
NLP Cloud streaming returns the entire response, for each chunk. Process this, to only return the delta.
"""
try:
chunk = chunk.strip()
self.complete_response = self.complete_response.strip()
if chunk.startswith(self.complete_response):
# Remove last_sent_chunk only if it appears at the start of the new chunk
chunk = chunk[len(self.complete_response) :]
self.complete_response += chunk
return chunk
except Exception as e:
raise e
def safety_checker(self) -> None:
"""
Fixes - https://github.com/BerriAI/litellm/issues/5158
if the model enters a loop and starts repeating the same chunk again, break out of loop and raise an internalservererror - allows for retries.
Raises - InternalServerError, if LLM enters infinite loop while streaming
"""
if len(self.chunks) >= litellm.REPEATED_STREAMING_CHUNK_LIMIT:
# Get the last n chunks
last_chunks = self.chunks[-litellm.REPEATED_STREAMING_CHUNK_LIMIT :]
# Extract the relevant content from the chunks
last_contents = [chunk.choices[0].delta.content for chunk in last_chunks]
# Check if all extracted contents are identical
if all(content == last_contents[0] for content in last_contents):
if (
last_contents[0] is not None
and isinstance(last_contents[0], str)
and len(last_contents[0]) > 2
): # ignore empty content - https://github.com/BerriAI/litellm/issues/5158#issuecomment-2287156946
# All last n chunks are identical
raise litellm.InternalServerError(
message="The model is repeating the same chunk = {}.".format(
last_contents[0]
),
model="",
llm_provider="",
)
def check_special_tokens(self, chunk: str, finish_reason: Optional[str]):
"""
Output parse <s> / </s> special tokens for sagemaker + hf streaming.
"""
hold = False
if (
self.custom_llm_provider != "huggingface"
and self.custom_llm_provider != "sagemaker"
):
return hold, chunk
if finish_reason:
for token in self.special_tokens:
if token in chunk:
chunk = chunk.replace(token, "")
return hold, chunk
if self.sent_first_chunk is True:
return hold, chunk
curr_chunk = self.holding_chunk + chunk
curr_chunk = curr_chunk.strip()
for token in self.special_tokens:
if len(curr_chunk) < len(token) and curr_chunk in token:
hold = True
self.holding_chunk = curr_chunk
elif len(curr_chunk) >= len(token):
if token in curr_chunk:
self.holding_chunk = curr_chunk.replace(token, "")
hold = True
else:
pass
if hold is False: # reset
self.holding_chunk = ""
return hold, curr_chunk
def handle_predibase_chunk(self, chunk):
try:
if not isinstance(chunk, str):
chunk = chunk.decode(
"utf-8"
) # DO NOT REMOVE this: This is required for HF inference API + Streaming
text = ""
is_finished = False
finish_reason = ""
print_verbose(f"chunk: {chunk}")
if chunk.startswith("data:"):
data_json = json.loads(chunk[5:])
print_verbose(f"data json: {data_json}")
if "token" in data_json and "text" in data_json["token"]:
text = data_json["token"]["text"]
if data_json.get("details", False) and data_json["details"].get(
"finish_reason", False
):
is_finished = True
finish_reason = data_json["details"]["finish_reason"]
elif data_json.get(
"generated_text", False
): # if full generated text exists, then stream is complete
text = "" # don't return the final bos token
is_finished = True
finish_reason = "stop"
elif data_json.get("error", False):
raise Exception(data_json.get("error"))
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
elif "error" in chunk:
raise ValueError(chunk)
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
except Exception as e:
raise e
def handle_huggingface_chunk(self, chunk):
try:
if not isinstance(chunk, str):
chunk = chunk.decode(
"utf-8"
) # DO NOT REMOVE this: This is required for HF inference API + Streaming
text = ""
is_finished = False
finish_reason = ""
print_verbose(f"chunk: {chunk}")
if chunk.startswith("data:"):
data_json = json.loads(chunk[5:])
print_verbose(f"data json: {data_json}")
if "token" in data_json and "text" in data_json["token"]:
text = data_json["token"]["text"]
if data_json.get("details", False) and data_json["details"].get(
"finish_reason", False
):
is_finished = True
finish_reason = data_json["details"]["finish_reason"]
elif data_json.get(
"generated_text", False
): # if full generated text exists, then stream is complete
text = "" # don't return the final bos token
is_finished = True
finish_reason = "stop"
elif data_json.get("error", False):
raise Exception(data_json.get("error"))
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
elif "error" in chunk:
raise ValueError(chunk)
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
except Exception as e:
raise e
def handle_ai21_chunk(self, chunk): # fake streaming
chunk = chunk.decode("utf-8")
data_json = json.loads(chunk)
try:
text = data_json["completions"][0]["data"]["text"]
is_finished = True
finish_reason = "stop"
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
except Exception:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_maritalk_chunk(self, chunk): # fake streaming
chunk = chunk.decode("utf-8")
data_json = json.loads(chunk)
try:
text = data_json["answer"]
is_finished = True
finish_reason = "stop"
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
except Exception:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_nlp_cloud_chunk(self, chunk):
text = ""
is_finished = False
finish_reason = ""
try:
if "dolphin" in self.model:
chunk = self.process_chunk(chunk=chunk)
else:
data_json = json.loads(chunk)
chunk = data_json["generated_text"]
text = chunk
if "[DONE]" in text:
text = text.replace("[DONE]", "")
is_finished = True
finish_reason = "stop"
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
except Exception:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_aleph_alpha_chunk(self, chunk):
chunk = chunk.decode("utf-8")
data_json = json.loads(chunk)
try:
text = data_json["completions"][0]["completion"]
is_finished = True
finish_reason = "stop"
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
except Exception:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_azure_chunk(self, chunk):
is_finished = False
finish_reason = ""
text = ""
print_verbose(f"chunk: {chunk}")
if "data: [DONE]" in chunk:
text = ""
is_finished = True
finish_reason = "stop"
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
elif chunk.startswith("data:"):
data_json = json.loads(chunk[5:]) # chunk.startswith("data:"):
try:
if len(data_json["choices"]) > 0:
delta = data_json["choices"][0]["delta"]
text = "" if delta is None else delta.get("content", "")
if data_json["choices"][0].get("finish_reason", None):
is_finished = True
finish_reason = data_json["choices"][0]["finish_reason"]
print_verbose(
f"text: {text}; is_finished: {is_finished}; finish_reason: {finish_reason}"
)
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
except Exception:
raise ValueError(
f"Unable to parse response. Original response: {chunk}"
)
elif "error" in chunk:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
else:
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
def handle_replicate_chunk(self, chunk):
try:
text = ""
is_finished = False
finish_reason = ""
if "output" in chunk:
text = chunk["output"]
if "status" in chunk:
if chunk["status"] == "succeeded":
is_finished = True
finish_reason = "stop"
elif chunk.get("error", None):
raise Exception(chunk["error"])
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
except Exception:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_openai_chat_completion_chunk(self, chunk):
try:
print_verbose(f"\nRaw OpenAI Chunk\n{chunk}\n")
str_line = chunk
text = ""
is_finished = False
finish_reason = None
logprobs = None
usage = None
if str_line and str_line.choices and len(str_line.choices) > 0:
if (
str_line.choices[0].delta is not None
and str_line.choices[0].delta.content is not None
):
text = str_line.choices[0].delta.content
else: # function/tool calling chunk - when content is None. in this case we just return the original chunk from openai
pass
if str_line.choices[0].finish_reason:
is_finished = True
finish_reason = str_line.choices[0].finish_reason
# checking for logprobs
if (
hasattr(str_line.choices[0], "logprobs")
and str_line.choices[0].logprobs is not None
):
logprobs = str_line.choices[0].logprobs
else:
logprobs = None
usage = getattr(str_line, "usage", None)
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
"logprobs": logprobs,
"original_chunk": str_line,
"usage": usage,
}
except Exception as e:
raise e
def handle_azure_text_completion_chunk(self, chunk):
try:
print_verbose(f"\nRaw OpenAI Chunk\n{chunk}\n")
text = ""
is_finished = False
finish_reason = None
choices = getattr(chunk, "choices", [])
if len(choices) > 0:
text = choices[0].text
if choices[0].finish_reason is not None:
is_finished = True
finish_reason = choices[0].finish_reason
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
except Exception as e:
raise e
def handle_openai_text_completion_chunk(self, chunk):
try:
print_verbose(f"\nRaw OpenAI Chunk\n{chunk}\n")
text = ""
is_finished = False
finish_reason = None
usage = None
choices = getattr(chunk, "choices", [])
if len(choices) > 0:
text = choices[0].text
if choices[0].finish_reason is not None:
is_finished = True
finish_reason = choices[0].finish_reason
usage = getattr(chunk, "usage", None)
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
"usage": usage,
}
except Exception as e:
raise e
def handle_baseten_chunk(self, chunk):
try:
chunk = chunk.decode("utf-8")
if len(chunk) > 0:
if chunk.startswith("data:"):
data_json = json.loads(chunk[5:])
if "token" in data_json and "text" in data_json["token"]:
return data_json["token"]["text"]
else:
return ""
data_json = json.loads(chunk)
if "model_output" in data_json:
if (
isinstance(data_json["model_output"], dict)
and "data" in data_json["model_output"]
and isinstance(data_json["model_output"]["data"], list)
):
return data_json["model_output"]["data"][0]
elif isinstance(data_json["model_output"], str):
return data_json["model_output"]
elif "completion" in data_json and isinstance(
data_json["completion"], str
):
return data_json["completion"]
else:
raise ValueError(
f"Unable to parse response. Original response: {chunk}"
)
else:
return ""
else:
return ""
except Exception as e:
verbose_logger.exception(
"litellm.CustomStreamWrapper.handle_baseten_chunk(): Exception occured - {}".format(
str(e)
)
)
return ""
def handle_ollama_chat_stream(self, chunk):
# for ollama_chat/ provider
try:
if isinstance(chunk, dict):
json_chunk = chunk
else:
json_chunk = json.loads(chunk)
if "error" in json_chunk:
raise Exception(f"Ollama Error - {json_chunk}")
text = ""
is_finished = False
finish_reason = None
if json_chunk["done"] is True:
text = ""
is_finished = True
finish_reason = "stop"
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
elif "message" in json_chunk:
print_verbose(f"delta content: {json_chunk}")
text = json_chunk["message"]["content"]
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
else:
raise Exception(f"Ollama Error - {json_chunk}")
except Exception as e:
raise e
def handle_triton_stream(self, chunk):
try:
if isinstance(chunk, dict):
parsed_response = chunk
elif isinstance(chunk, (str, bytes)):
if isinstance(chunk, bytes):
chunk = chunk.decode("utf-8")
if "text_output" in chunk:
response = chunk.replace("data: ", "").strip()
parsed_response = json.loads(response)
else:
return {
"text": "",
"is_finished": False,
"prompt_tokens": 0,
"completion_tokens": 0,
}
else:
print_verbose(f"chunk: {chunk} (Type: {type(chunk)})")
raise ValueError(
f"Unable to parse response. Original response: {chunk}"
)
text = parsed_response.get("text_output", "")
finish_reason = parsed_response.get("stop_reason")
is_finished = parsed_response.get("is_finished", False)
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
"prompt_tokens": parsed_response.get("input_token_count", 0),
"completion_tokens": parsed_response.get("generated_token_count", 0),
}
return {"text": "", "is_finished": False}
except Exception as e:
raise e
def model_response_creator(
self, chunk: Optional[dict] = None, hidden_params: Optional[dict] = None
):
_model = self.model
_received_llm_provider = self.custom_llm_provider
_logging_obj_llm_provider = self.logging_obj.model_call_details.get("custom_llm_provider", None) # type: ignore
if (
_received_llm_provider == "openai"
and _received_llm_provider != _logging_obj_llm_provider
):
_model = "{}/{}".format(_logging_obj_llm_provider, _model)
if chunk is None:
chunk = {}
else:
# pop model keyword
chunk.pop("model", None)
chunk_dict = {}
for key, value in chunk.items():
if key != "stream":
chunk_dict[key] = value
args = {
"model": _model,
"stream_options": self.stream_options,
**chunk_dict,
}
model_response = ModelResponseStream(**args)
if self.response_id is not None:
model_response.id = self.response_id
else:
self.response_id = model_response.id # type: ignore
if self.system_fingerprint is not None:
model_response.system_fingerprint = self.system_fingerprint
if hidden_params is not None:
model_response._hidden_params = hidden_params
model_response._hidden_params["custom_llm_provider"] = _logging_obj_llm_provider
model_response._hidden_params["created_at"] = time.time()
model_response._hidden_params = {
**model_response._hidden_params,
**self._hidden_params,
}
if (
len(model_response.choices) > 0
and getattr(model_response.choices[0], "delta") is not None
):
# do nothing, if object instantiated
pass
else:
model_response.choices = [StreamingChoices(finish_reason=None)]
return model_response
def is_delta_empty(self, delta: Delta) -> bool:
is_empty = True
if delta.content is not None:
is_empty = False
elif delta.tool_calls is not None:
is_empty = False
elif delta.function_call is not None:
is_empty = False
return is_empty
def return_processed_chunk_logic( # noqa
self,
completion_obj: Dict[str, Any],
model_response: ModelResponseStream,
response_obj: Dict[str, Any],
):
print_verbose(
f"completion_obj: {completion_obj}, model_response.choices[0]: {model_response.choices[0]}, response_obj: {response_obj}"
)
if (
"content" in completion_obj
and (
isinstance(completion_obj["content"], str)
and len(completion_obj["content"]) > 0
)
or (
"tool_calls" in completion_obj
and completion_obj["tool_calls"] is not None
and len(completion_obj["tool_calls"]) > 0
)
or (
"function_call" in completion_obj
and completion_obj["function_call"] is not None
)
or (model_response.choices[0].delta.provider_specific_fields is not None)
or (
"provider_specific_fields" in response_obj
and response_obj["provider_specific_fields"] is not None
)
): # cannot set content of an OpenAI Object to be an empty string
self.safety_checker()
hold, model_response_str = self.check_special_tokens(
chunk=completion_obj["content"],
finish_reason=model_response.choices[0].finish_reason,
) # filter out bos/eos tokens from openai-compatible hf endpoints
print_verbose(f"hold - {hold}, model_response_str - {model_response_str}")
if hold is False:
## check if openai/azure chunk
original_chunk = response_obj.get("original_chunk", None)
if original_chunk:
model_response.id = original_chunk.id
self.response_id = original_chunk.id
if len(original_chunk.choices) > 0:
choices = []
for choice in original_chunk.choices:
try:
if isinstance(choice, BaseModel):
choice_json = choice.model_dump()
choice_json.pop(
"finish_reason", None
) # for mistral etc. which return a value in their last chunk (not-openai compatible).
print_verbose(f"choice_json: {choice_json}")
choices.append(StreamingChoices(**choice_json))
except Exception:
choices.append(StreamingChoices())
print_verbose(f"choices in streaming: {choices}")
setattr(model_response, "choices", choices)
else:
return
model_response.system_fingerprint = (
original_chunk.system_fingerprint
)
setattr(
model_response,
"citations",
getattr(original_chunk, "citations", None),
)
print_verbose(f"self.sent_first_chunk: {self.sent_first_chunk}")
if self.sent_first_chunk is False:
model_response.choices[0].delta["role"] = "assistant"
self.sent_first_chunk = True
elif self.sent_first_chunk is True and hasattr(
model_response.choices[0].delta, "role"
):
_initial_delta = model_response.choices[0].delta.model_dump()
_initial_delta.pop("role", None)
model_response.choices[0].delta = Delta(**_initial_delta)
print_verbose(
f"model_response.choices[0].delta: {model_response.choices[0].delta}"
)
else:
## else
completion_obj["content"] = model_response_str
if self.sent_first_chunk is False:
completion_obj["role"] = "assistant"
self.sent_first_chunk = True
model_response.choices[0].delta = Delta(**completion_obj)
_index: Optional[int] = completion_obj.get("index")
if _index is not None:
model_response.choices[0].index = _index
print_verbose(f"returning model_response: {model_response}")
return model_response
else:
return
elif self.received_finish_reason is not None:
if self.sent_last_chunk is True:
# Bedrock returns the guardrail trace in the last chunk - we want to return this here
if self.custom_llm_provider == "bedrock" and "trace" in model_response:
return model_response
# Default - return StopIteration
raise StopIteration
# flush any remaining holding chunk
if len(self.holding_chunk) > 0:
if model_response.choices[0].delta.content is None:
model_response.choices[0].delta.content = self.holding_chunk
else:
model_response.choices[0].delta.content = (
self.holding_chunk + model_response.choices[0].delta.content
)
self.holding_chunk = ""
# if delta is None
_is_delta_empty = self.is_delta_empty(delta=model_response.choices[0].delta)
if _is_delta_empty:
# get any function call arguments
model_response.choices[0].finish_reason = map_finish_reason(
finish_reason=self.received_finish_reason
) # ensure consistent output to openai
self.sent_last_chunk = True
return model_response
elif (
model_response.choices[0].delta.tool_calls is not None
or model_response.choices[0].delta.function_call is not None
):
if self.sent_first_chunk is False:
model_response.choices[0].delta["role"] = "assistant"
self.sent_first_chunk = True
return model_response
elif (
len(model_response.choices) > 0
and hasattr(model_response.choices[0].delta, "audio")
and model_response.choices[0].delta.audio is not None
):
return model_response
else:
if hasattr(model_response, "usage"):
self.chunks.append(model_response)
return
def chunk_creator(self, chunk): # type: ignore # noqa: PLR0915
model_response = self.model_response_creator()
response_obj: Dict[str, Any] = {}
try:
# return this for all models
completion_obj: Dict[str, Any] = {"content": ""}
from litellm.types.utils import GenericStreamingChunk as GChunk
if (
isinstance(chunk, dict)
and generic_chunk_has_all_required_fields(
chunk=chunk
) # check if chunk is a generic streaming chunk
) or (
self.custom_llm_provider
and (
self.custom_llm_provider == "anthropic"
or self.custom_llm_provider in litellm._custom_providers
)
):
if self.received_finish_reason is not None:
if "provider_specific_fields" not in chunk:
raise StopIteration
anthropic_response_obj: GChunk = chunk
completion_obj["content"] = anthropic_response_obj["text"]
if anthropic_response_obj["is_finished"]:
self.received_finish_reason = anthropic_response_obj[
"finish_reason"
]
if anthropic_response_obj["finish_reason"]:
self.intermittent_finish_reason = anthropic_response_obj[
"finish_reason"
]
if anthropic_response_obj["usage"] is not None:
model_response.usage = litellm.Usage(
**anthropic_response_obj["usage"]
)
if (
"tool_use" in anthropic_response_obj
and anthropic_response_obj["tool_use"] is not None
):
completion_obj["tool_calls"] = [anthropic_response_obj["tool_use"]]
if (
"provider_specific_fields" in anthropic_response_obj
and anthropic_response_obj["provider_specific_fields"] is not None
):
for key, value in anthropic_response_obj[
"provider_specific_fields"
].items():
setattr(model_response, key, value)
response_obj = anthropic_response_obj
elif self.model == "replicate" or self.custom_llm_provider == "replicate":
response_obj = self.handle_replicate_chunk(chunk)
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider and self.custom_llm_provider == "huggingface":
response_obj = self.handle_huggingface_chunk(chunk)
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider and self.custom_llm_provider == "predibase":
response_obj = self.handle_predibase_chunk(chunk)
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif (
self.custom_llm_provider and self.custom_llm_provider == "baseten"
): # baseten doesn't provide streaming
completion_obj["content"] = self.handle_baseten_chunk(chunk)
elif (
self.custom_llm_provider and self.custom_llm_provider == "ai21"
): # ai21 doesn't provide streaming
response_obj = self.handle_ai21_chunk(chunk)
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider and self.custom_llm_provider == "maritalk":
response_obj = self.handle_maritalk_chunk(chunk)
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider and self.custom_llm_provider == "vllm":
completion_obj["content"] = chunk[0].outputs[0].text
elif (
self.custom_llm_provider and self.custom_llm_provider == "aleph_alpha"
): # aleph alpha doesn't provide streaming
response_obj = self.handle_aleph_alpha_chunk(chunk)
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "nlp_cloud":
try:
response_obj = self.handle_nlp_cloud_chunk(chunk)
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
except Exception as e:
if self.received_finish_reason:
raise e
else:
if self.sent_first_chunk is False:
raise Exception("An unknown error occurred with the stream")
self.received_finish_reason = "stop"
elif self.custom_llm_provider == "vertex_ai":
import proto # type: ignore
if hasattr(chunk, "candidates") is True:
try:
try:
completion_obj["content"] = chunk.text
except Exception as e:
if "Part has no text." in str(e):
## check for function calling
function_call = (
chunk.candidates[0].content.parts[0].function_call
)
args_dict = {}
# Check if it's a RepeatedComposite instance
for key, val in function_call.args.items():
if isinstance(
val,
proto.marshal.collections.repeated.RepeatedComposite,
):
# If so, convert to list
args_dict[key] = [v for v in val]
else:
args_dict[key] = val
try:
args_str = json.dumps(args_dict)
except Exception as e:
raise e
_delta_obj = litellm.utils.Delta(
content=None,
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {
"arguments": args_str,
"name": function_call.name,
},
"type": "function",
}
],
)
_streaming_response = StreamingChoices(delta=_delta_obj)
_model_response = ModelResponse(stream=True)
_model_response.choices = [_streaming_response]
response_obj = {"original_chunk": _model_response}
else:
raise e
if (
hasattr(chunk.candidates[0], "finish_reason")
and chunk.candidates[0].finish_reason.name
!= "FINISH_REASON_UNSPECIFIED"
): # every non-final chunk in vertex ai has this
self.received_finish_reason = chunk.candidates[
0
].finish_reason.name
except Exception:
if chunk.candidates[0].finish_reason.name == "SAFETY":
raise Exception(
f"The response was blocked by VertexAI. {str(chunk)}"
)
else:
completion_obj["content"] = str(chunk)
elif self.custom_llm_provider == "petals":
if len(self.completion_stream) == 0:
if self.received_finish_reason is not None:
raise StopIteration
else:
self.received_finish_reason = "stop"
chunk_size = 30
new_chunk = self.completion_stream[:chunk_size]
completion_obj["content"] = new_chunk
self.completion_stream = self.completion_stream[chunk_size:]
elif self.custom_llm_provider == "palm":
# fake streaming
response_obj = {}
if len(self.completion_stream) == 0:
if self.received_finish_reason is not None:
raise StopIteration
else:
self.received_finish_reason = "stop"
chunk_size = 30
new_chunk = self.completion_stream[:chunk_size]
completion_obj["content"] = new_chunk
self.completion_stream = self.completion_stream[chunk_size:]
elif self.custom_llm_provider == "ollama_chat":
response_obj = self.handle_ollama_chat_stream(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "triton":
response_obj = self.handle_triton_stream(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "text-completion-openai":
response_obj = self.handle_openai_text_completion_chunk(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
if response_obj["usage"] is not None:
model_response.usage = litellm.Usage(
prompt_tokens=response_obj["usage"].prompt_tokens,
completion_tokens=response_obj["usage"].completion_tokens,
total_tokens=response_obj["usage"].total_tokens,
)
elif self.custom_llm_provider == "text-completion-codestral":
response_obj = litellm.CodestralTextCompletionConfig()._chunk_parser(
chunk
)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
if "usage" in response_obj is not None:
model_response.usage = litellm.Usage(
prompt_tokens=response_obj["usage"].prompt_tokens,
completion_tokens=response_obj["usage"].completion_tokens,
total_tokens=response_obj["usage"].total_tokens,
)
elif self.custom_llm_provider == "azure_text":
response_obj = self.handle_azure_text_completion_chunk(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "cached_response":
response_obj = {
"text": chunk.choices[0].delta.content,
"is_finished": True,
"finish_reason": chunk.choices[0].finish_reason,
"original_chunk": chunk,
"tool_calls": (
chunk.choices[0].delta.tool_calls
if hasattr(chunk.choices[0].delta, "tool_calls")
else None
),
}
completion_obj["content"] = response_obj["text"]
if response_obj["tool_calls"] is not None:
completion_obj["tool_calls"] = response_obj["tool_calls"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if hasattr(chunk, "id"):
model_response.id = chunk.id
self.response_id = chunk.id
if hasattr(chunk, "system_fingerprint"):
self.system_fingerprint = chunk.system_fingerprint
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
else: # openai / azure chat model
if self.custom_llm_provider == "azure":
if isinstance(chunk, BaseModel) and hasattr(chunk, "model"):
# for azure, we need to pass the model from the orignal chunk
self.model = chunk.model
response_obj = self.handle_openai_chat_completion_chunk(chunk)
if response_obj is None:
return
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
if response_obj["finish_reason"] == "error":
raise Exception(
"{} raised a streaming error - finish_reason: error, no content string given. Received Chunk={}".format(
self.custom_llm_provider, response_obj
)
)
self.received_finish_reason = response_obj["finish_reason"]
if response_obj.get("original_chunk", None) is not None:
if hasattr(response_obj["original_chunk"], "id"):
model_response.id = response_obj["original_chunk"].id
self.response_id = model_response.id
if hasattr(response_obj["original_chunk"], "system_fingerprint"):
model_response.system_fingerprint = response_obj[
"original_chunk"
].system_fingerprint
self.system_fingerprint = response_obj[
"original_chunk"
].system_fingerprint
if response_obj["logprobs"] is not None:
model_response.choices[0].logprobs = response_obj["logprobs"]
if response_obj["usage"] is not None:
if isinstance(response_obj["usage"], dict):
setattr(
model_response,
"usage",
litellm.Usage(
prompt_tokens=response_obj["usage"].get(
"prompt_tokens", None
)
or None,
completion_tokens=response_obj["usage"].get(
"completion_tokens", None
)
or None,
total_tokens=response_obj["usage"].get(
"total_tokens", None
)
or None,
),
)
elif isinstance(response_obj["usage"], BaseModel):
setattr(
model_response,
"usage",
litellm.Usage(**response_obj["usage"].model_dump()),
)
model_response.model = self.model
print_verbose(
f"model_response finish reason 3: {self.received_finish_reason}; response_obj={response_obj}"
)
## FUNCTION CALL PARSING
if (
response_obj is not None
and response_obj.get("original_chunk", None) is not None
): # function / tool calling branch - only set for openai/azure compatible endpoints
# enter this branch when no content has been passed in response
original_chunk = response_obj.get("original_chunk", None)
model_response.id = original_chunk.id
self.response_id = original_chunk.id
if original_chunk.choices and len(original_chunk.choices) > 0:
delta = original_chunk.choices[0].delta
if delta is not None and (
delta.function_call is not None or delta.tool_calls is not None
):
try:
model_response.system_fingerprint = (
original_chunk.system_fingerprint
)
## AZURE - check if arguments is not None
if (
original_chunk.choices[0].delta.function_call
is not None
):
if (
getattr(
original_chunk.choices[0].delta.function_call,
"arguments",
)
is None
):
original_chunk.choices[
0
].delta.function_call.arguments = ""
elif original_chunk.choices[0].delta.tool_calls is not None:
if isinstance(
original_chunk.choices[0].delta.tool_calls, list
):
for t in original_chunk.choices[0].delta.tool_calls:
if hasattr(t, "functions") and hasattr(
t.functions, "arguments"
):
if (
getattr(
t.function,
"arguments",
)
is None
):
t.function.arguments = ""
_json_delta = delta.model_dump()
print_verbose(f"_json_delta: {_json_delta}")
if "role" not in _json_delta or _json_delta["role"] is None:
_json_delta["role"] = (
"assistant" # mistral's api returns role as None
)
if "tool_calls" in _json_delta and isinstance(
_json_delta["tool_calls"], list
):
for tool in _json_delta["tool_calls"]:
if (
isinstance(tool, dict)
and "function" in tool
and isinstance(tool["function"], dict)
and ("type" not in tool or tool["type"] is None)
):
# if function returned but type set to None - mistral's api returns type: None
tool["type"] = "function"
model_response.choices[0].delta = Delta(**_json_delta)
except Exception as e:
verbose_logger.exception(
"litellm.CustomStreamWrapper.chunk_creator(): Exception occured - {}".format(
str(e)
)
)
model_response.choices[0].delta = Delta()
elif (
delta is not None and getattr(delta, "audio", None) is not None
):
model_response.choices[0].delta.audio = delta.audio
else:
try:
delta = (
dict()
if original_chunk.choices[0].delta is None
else dict(original_chunk.choices[0].delta)
)
print_verbose(f"original delta: {delta}")
model_response.choices[0].delta = Delta(**delta)
print_verbose(
f"new delta: {model_response.choices[0].delta}"
)
except Exception:
model_response.choices[0].delta = Delta()
else:
if (
self.stream_options is not None
and self.stream_options["include_usage"] is True
):
return model_response
return
print_verbose(
f"model_response.choices[0].delta: {model_response.choices[0].delta}; completion_obj: {completion_obj}"
)
print_verbose(f"self.sent_first_chunk: {self.sent_first_chunk}")
## CHECK FOR TOOL USE
if "tool_calls" in completion_obj and len(completion_obj["tool_calls"]) > 0:
if self.is_function_call is True: # user passed in 'functions' param
completion_obj["function_call"] = completion_obj["tool_calls"][0][
"function"
]
completion_obj["tool_calls"] = None
self.tool_call = True
## RETURN ARG
return self.return_processed_chunk_logic(
completion_obj=completion_obj,
model_response=model_response, # type: ignore
response_obj=response_obj,
)
except StopIteration:
raise StopIteration
except Exception as e:
traceback.format_exc()
setattr(e, "message", str(e))
raise exception_type(
model=self.model,
custom_llm_provider=self.custom_llm_provider,
original_exception=e,
)
def set_logging_event_loop(self, loop):
"""
import litellm, asyncio
loop = asyncio.get_event_loop() # π gets the current event loop
response = litellm.completion(.., stream=True)
response.set_logging_event_loop(loop=loop) # π enables async_success callbacks for sync logging
for chunk in response:
...
"""
self.logging_loop = loop
def run_success_logging_and_cache_storage(self, processed_chunk, cache_hit: bool):
"""
Runs success logging in a thread and adds the response to the cache
"""
if litellm.disable_streaming_logging is True:
"""
[NOT RECOMMENDED]
Set this via `litellm.disable_streaming_logging = True`.
Disables streaming logging.
"""
return
## ASYNC LOGGING
# Create an event loop for the new thread
if self.logging_loop is not None:
future = asyncio.run_coroutine_threadsafe(
self.logging_obj.async_success_handler(
processed_chunk, None, None, cache_hit
),
loop=self.logging_loop,
)
future.result()
else:
asyncio.run(
self.logging_obj.async_success_handler(
processed_chunk, None, None, cache_hit
)
)
## SYNC LOGGING
self.logging_obj.success_handler(processed_chunk, None, None, cache_hit)
## Sync store in cache
if self.logging_obj._llm_caching_handler is not None:
self.logging_obj._llm_caching_handler._sync_add_streaming_response_to_cache(
processed_chunk
)
def finish_reason_handler(self):
model_response = self.model_response_creator()
_finish_reason = self.received_finish_reason or self.intermittent_finish_reason
if _finish_reason is not None:
model_response.choices[0].finish_reason = _finish_reason
else:
model_response.choices[0].finish_reason = "stop"
## if tool use
if (
model_response.choices[0].finish_reason == "stop" and self.tool_call
): # don't overwrite for other - potential error finish reasons
model_response.choices[0].finish_reason = "tool_calls"
return model_response
def __next__(self): # noqa: PLR0915
cache_hit = False
if (
self.custom_llm_provider is not None
and self.custom_llm_provider == "cached_response"
):
cache_hit = True
try:
if self.completion_stream is None:
self.fetch_sync_stream()
while True:
if (
isinstance(self.completion_stream, str)
or isinstance(self.completion_stream, bytes)
or isinstance(self.completion_stream, ModelResponse)
):
chunk = self.completion_stream
else:
chunk = next(self.completion_stream)
if chunk is not None and chunk != b"":
print_verbose(
f"PROCESSED CHUNK PRE CHUNK CREATOR: {chunk}; custom_llm_provider: {self.custom_llm_provider}"
)
response: Optional[ModelResponseStream] = self.chunk_creator(
chunk=chunk
)
print_verbose(f"PROCESSED CHUNK POST CHUNK CREATOR: {response}")
if response is None:
continue
## LOGGING
threading.Thread(
target=self.run_success_logging_and_cache_storage,
args=(response, cache_hit),
).start() # log response
choice = response.choices[0]
if isinstance(choice, StreamingChoices):
self.response_uptil_now += choice.delta.get("content", "") or ""
else:
self.response_uptil_now += ""
self.rules.post_call_rules(
input=self.response_uptil_now, model=self.model
)
# HANDLE STREAM OPTIONS
self.chunks.append(response)
if hasattr(
response, "usage"
): # remove usage from chunk, only send on final chunk
# Convert the object to a dictionary
obj_dict = response.dict()
# Remove an attribute (e.g., 'attr2')
if "usage" in obj_dict:
del obj_dict["usage"]
# Create a new object without the removed attribute
response = self.model_response_creator(
chunk=obj_dict, hidden_params=response._hidden_params
)
# add usage as hidden param
if self.sent_last_chunk is True and self.stream_options is None:
usage = calculate_total_usage(chunks=self.chunks)
response._hidden_params["usage"] = usage
# RETURN RESULT
return response
except StopIteration:
if self.sent_last_chunk is True:
complete_streaming_response = litellm.stream_chunk_builder(
chunks=self.chunks, messages=self.messages
)
response = self.model_response_creator()
if complete_streaming_response is not None:
setattr(
response,
"usage",
getattr(complete_streaming_response, "usage"),
)
## LOGGING
threading.Thread(
target=self.logging_obj.success_handler,
args=(response, None, None, cache_hit),
).start() # log response
if self.sent_stream_usage is False and self.send_stream_usage is True:
self.sent_stream_usage = True
return response
raise # Re-raise StopIteration
else:
self.sent_last_chunk = True
processed_chunk = self.finish_reason_handler()
if self.stream_options is None: # add usage as hidden param
usage = calculate_total_usage(chunks=self.chunks)
processed_chunk._hidden_params["usage"] = usage
## LOGGING
threading.Thread(
target=self.run_success_logging_and_cache_storage,
args=(processed_chunk, cache_hit),
).start() # log response
return processed_chunk
except Exception as e:
traceback_exception = traceback.format_exc()
# LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated
threading.Thread(
target=self.logging_obj.failure_handler, args=(e, traceback_exception)
).start()
if isinstance(e, OpenAIError):
raise e
else:
raise exception_type(
model=self.model,
original_exception=e,
custom_llm_provider=self.custom_llm_provider,
)
def fetch_sync_stream(self):
if self.completion_stream is None and self.make_call is not None:
# Call make_call to get the completion stream
self.completion_stream = self.make_call(client=litellm.module_level_client)
self._stream_iter = self.completion_stream.__iter__()
return self.completion_stream
async def fetch_stream(self):
if self.completion_stream is None and self.make_call is not None:
# Call make_call to get the completion stream
self.completion_stream = await self.make_call(
client=litellm.module_level_aclient
)
self._stream_iter = self.completion_stream.__aiter__()
return self.completion_stream
async def __anext__(self): # noqa: PLR0915
cache_hit = False
if (
self.custom_llm_provider is not None
and self.custom_llm_provider == "cached_response"
):
cache_hit = True
try:
if self.completion_stream is None:
await self.fetch_stream()
if is_async_iterable(self.completion_stream):
async for chunk in self.completion_stream:
if chunk == "None" or chunk is None:
raise Exception
elif (
self.custom_llm_provider == "gemini"
and hasattr(chunk, "parts")
and len(chunk.parts) == 0
):
continue
# chunk_creator() does logging/stream chunk building. We need to let it know its being called in_async_func, so we don't double add chunks.
# __anext__ also calls async_success_handler, which does logging
print_verbose(f"PROCESSED ASYNC CHUNK PRE CHUNK CREATOR: {chunk}")
processed_chunk: Optional[ModelResponseStream] = self.chunk_creator(
chunk=chunk
)
print_verbose(
f"PROCESSED ASYNC CHUNK POST CHUNK CREATOR: {processed_chunk}"
)
if processed_chunk is None:
continue
if self.logging_obj._llm_caching_handler is not None:
asyncio.create_task(
self.logging_obj._llm_caching_handler._add_streaming_response_to_cache(
processed_chunk=cast(ModelResponse, processed_chunk),
)
)
choice = processed_chunk.choices[0]
if isinstance(choice, StreamingChoices):
self.response_uptil_now += choice.delta.get("content", "") or ""
else:
self.response_uptil_now += ""
self.rules.post_call_rules(
input=self.response_uptil_now, model=self.model
)
self.chunks.append(processed_chunk)
if hasattr(
processed_chunk, "usage"
): # remove usage from chunk, only send on final chunk
# Convert the object to a dictionary
obj_dict = processed_chunk.dict()
# Remove an attribute (e.g., 'attr2')
if "usage" in obj_dict:
del obj_dict["usage"]
# Create a new object without the removed attribute
processed_chunk = self.model_response_creator(chunk=obj_dict)
print_verbose(f"final returned processed chunk: {processed_chunk}")
return processed_chunk
raise StopAsyncIteration
else: # temporary patch for non-aiohttp async calls
# example - boto3 bedrock llms
while True:
if isinstance(self.completion_stream, str) or isinstance(
self.completion_stream, bytes
):
chunk = self.completion_stream
else:
chunk = next(self.completion_stream)
if chunk is not None and chunk != b"":
print_verbose(f"PROCESSED CHUNK PRE CHUNK CREATOR: {chunk}")
processed_chunk: Optional[ModelResponseStream] = (
self.chunk_creator(chunk=chunk)
)
print_verbose(
f"PROCESSED CHUNK POST CHUNK CREATOR: {processed_chunk}"
)
if processed_chunk is None:
continue
choice = processed_chunk.choices[0]
if isinstance(choice, StreamingChoices):
self.response_uptil_now += (
choice.delta.get("content", "") or ""
)
else:
self.response_uptil_now += ""
self.rules.post_call_rules(
input=self.response_uptil_now, model=self.model
)
# RETURN RESULT
self.chunks.append(processed_chunk)
return processed_chunk
except (StopAsyncIteration, StopIteration):
if self.sent_last_chunk is True:
# log the final chunk with accurate streaming values
complete_streaming_response = litellm.stream_chunk_builder(
chunks=self.chunks, messages=self.messages
)
response = self.model_response_creator()
if complete_streaming_response is not None:
setattr(
response,
"usage",
getattr(complete_streaming_response, "usage"),
)
if self.sent_stream_usage is False and self.send_stream_usage is True:
self.sent_stream_usage = True
return response
asyncio.create_task(
self.logging_obj.async_success_handler(
complete_streaming_response,
cache_hit=cache_hit,
start_time=None,
end_time=None,
)
)
executor.submit(
self.logging_obj.success_handler,
complete_streaming_response,
cache_hit=cache_hit,
start_time=None,
end_time=None,
)
raise StopAsyncIteration # Re-raise StopIteration
else:
self.sent_last_chunk = True
processed_chunk = self.finish_reason_handler()
return processed_chunk
except httpx.TimeoutException as e: # if httpx read timeout error occues
traceback_exception = traceback.format_exc()
## ADD DEBUG INFORMATION - E.G. LITELLM REQUEST TIMEOUT
traceback_exception += "\nLiteLLM Default Request Timeout - {}".format(
litellm.request_timeout
)
if self.logging_obj is not None:
## LOGGING
threading.Thread(
target=self.logging_obj.failure_handler,
args=(e, traceback_exception),
).start() # log response
# Handle any exceptions that might occur during streaming
asyncio.create_task(
self.logging_obj.async_failure_handler(e, traceback_exception)
)
raise e
except Exception as e:
traceback_exception = traceback.format_exc()
if self.logging_obj is not None:
## LOGGING
threading.Thread(
target=self.logging_obj.failure_handler,
args=(e, traceback_exception),
).start() # log response
# Handle any exceptions that might occur during streaming
asyncio.create_task(
self.logging_obj.async_failure_handler(e, traceback_exception) # type: ignore
)
## Map to OpenAI Exception
raise exception_type(
model=self.model,
custom_llm_provider=self.custom_llm_provider,
original_exception=e,
completion_kwargs={},
extra_kwargs={},
)
def calculate_total_usage(chunks: List[ModelResponse]) -> Usage:
"""Assume most recent usage chunk has total usage uptil then."""
prompt_tokens: int = 0
completion_tokens: int = 0
for chunk in chunks:
if "usage" in chunk:
if "prompt_tokens" in chunk["usage"]:
prompt_tokens = chunk["usage"].get("prompt_tokens", 0) or 0
if "completion_tokens" in chunk["usage"]:
completion_tokens = chunk["usage"].get("completion_tokens", 0) or 0
returned_usage_chunk = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
return returned_usage_chunk
def generic_chunk_has_all_required_fields(chunk: dict) -> bool:
"""
Checks if the provided chunk dictionary contains all required fields for GenericStreamingChunk.
:param chunk: The dictionary to check.
:return: True if all required fields are present, False otherwise.
"""
_all_fields = GChunk.__annotations__
decision = all(key in _all_fields for key in chunk)
return decision
|