File size: 150,502 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
# What is this?
## Common Utility file for Logging handler
# Logging function -> log the exact model details + what's being sent | Non-Blocking
import copy
import datetime
import json
import os
import re
import subprocess
import sys
import time
import traceback
import uuid
from datetime import datetime as dt_object
from functools import lru_cache
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union, cast

from pydantic import BaseModel

import litellm
from litellm import (
    _custom_logger_compatible_callbacks_literal,
    json_logs,
    log_raw_request_response,
    turn_off_message_logging,
)
from litellm._logging import _is_debugging_on, verbose_logger
from litellm.caching.caching import DualCache, InMemoryCache
from litellm.caching.caching_handler import LLMCachingHandler
from litellm.cost_calculator import _select_model_name_for_cost_calc
from litellm.integrations.custom_guardrail import CustomGuardrail
from litellm.integrations.custom_logger import CustomLogger
from litellm.integrations.mlflow import MlflowLogger
from litellm.integrations.pagerduty.pagerduty import PagerDutyAlerting
from litellm.litellm_core_utils.get_litellm_params import get_litellm_params
from litellm.litellm_core_utils.redact_messages import (
    redact_message_input_output_from_custom_logger,
    redact_message_input_output_from_logging,
)
from litellm.types.llms.openai import (
    AllMessageValues,
    Batch,
    FineTuningJob,
    HttpxBinaryResponseContent,
)
from litellm.types.rerank import RerankResponse
from litellm.types.router import SPECIAL_MODEL_INFO_PARAMS
from litellm.types.utils import (
    CallTypes,
    EmbeddingResponse,
    ImageResponse,
    LiteLLMLoggingBaseClass,
    ModelResponse,
    ModelResponseStream,
    StandardCallbackDynamicParams,
    StandardLoggingAdditionalHeaders,
    StandardLoggingHiddenParams,
    StandardLoggingMetadata,
    StandardLoggingModelCostFailureDebugInformation,
    StandardLoggingModelInformation,
    StandardLoggingPayload,
    StandardLoggingPayloadErrorInformation,
    StandardLoggingPayloadStatus,
    StandardLoggingPromptManagementMetadata,
    TextCompletionResponse,
    TranscriptionResponse,
    Usage,
)
from litellm.utils import _get_base_model_from_metadata, executor, print_verbose

from ..integrations.argilla import ArgillaLogger
from ..integrations.arize_ai import ArizeLogger
from ..integrations.athina import AthinaLogger
from ..integrations.azure_storage.azure_storage import AzureBlobStorageLogger
from ..integrations.braintrust_logging import BraintrustLogger
from ..integrations.datadog.datadog import DataDogLogger
from ..integrations.datadog.datadog_llm_obs import DataDogLLMObsLogger
from ..integrations.dynamodb import DyanmoDBLogger
from ..integrations.galileo import GalileoObserve
from ..integrations.gcs_bucket.gcs_bucket import GCSBucketLogger
from ..integrations.gcs_pubsub.pub_sub import GcsPubSubLogger
from ..integrations.greenscale import GreenscaleLogger
from ..integrations.helicone import HeliconeLogger
from ..integrations.humanloop import HumanloopLogger
from ..integrations.lago import LagoLogger
from ..integrations.langfuse.langfuse import LangFuseLogger
from ..integrations.langfuse.langfuse_handler import LangFuseHandler
from ..integrations.langfuse.langfuse_prompt_management import LangfusePromptManagement
from ..integrations.langsmith import LangsmithLogger
from ..integrations.literal_ai import LiteralAILogger
from ..integrations.logfire_logger import LogfireLevel, LogfireLogger
from ..integrations.lunary import LunaryLogger
from ..integrations.openmeter import OpenMeterLogger
from ..integrations.opik.opik import OpikLogger
from ..integrations.prometheus import PrometheusLogger
from ..integrations.prompt_layer import PromptLayerLogger
from ..integrations.s3 import S3Logger
from ..integrations.supabase import Supabase
from ..integrations.traceloop import TraceloopLogger
from ..integrations.weights_biases import WeightsBiasesLogger
from .exception_mapping_utils import _get_response_headers
from .initialize_dynamic_callback_params import (
    initialize_standard_callback_dynamic_params as _initialize_standard_callback_dynamic_params,
)
from .logging_utils import _assemble_complete_response_from_streaming_chunks
from .specialty_caches.dynamic_logging_cache import DynamicLoggingCache

try:
    from ..proxy.enterprise.enterprise_callbacks.generic_api_callback import (
        GenericAPILogger,
    )
except Exception as e:
    verbose_logger.debug(
        f"[Non-Blocking] Unable to import GenericAPILogger - LiteLLM Enterprise Feature - {str(e)}"
    )

_in_memory_loggers: List[Any] = []

### GLOBAL VARIABLES ###

sentry_sdk_instance = None
capture_exception = None
add_breadcrumb = None
posthog = None
slack_app = None
alerts_channel = None
heliconeLogger = None
athinaLogger = None
promptLayerLogger = None
logfireLogger = None
weightsBiasesLogger = None
customLogger = None
langFuseLogger = None
openMeterLogger = None
lagoLogger = None
dataDogLogger = None
prometheusLogger = None
dynamoLogger = None
s3Logger = None
genericAPILogger = None
greenscaleLogger = None
lunaryLogger = None
supabaseClient = None
callback_list: Optional[List[str]] = []
user_logger_fn = None
additional_details: Optional[Dict[str, str]] = {}
local_cache: Optional[Dict[str, str]] = {}
last_fetched_at = None
last_fetched_at_keys = None


####
class ServiceTraceIDCache:
    def __init__(self) -> None:
        self.cache = InMemoryCache()

    def get_cache(self, litellm_call_id: str, service_name: str) -> Optional[str]:
        key_name = "{}:{}".format(service_name, litellm_call_id)
        response = self.cache.get_cache(key=key_name)
        return response

    def set_cache(self, litellm_call_id: str, service_name: str, trace_id: str) -> None:
        key_name = "{}:{}".format(service_name, litellm_call_id)
        self.cache.set_cache(key=key_name, value=trace_id)
        return None


in_memory_trace_id_cache = ServiceTraceIDCache()
in_memory_dynamic_logger_cache = DynamicLoggingCache()


class Logging(LiteLLMLoggingBaseClass):
    global supabaseClient, promptLayerLogger, weightsBiasesLogger, logfireLogger, capture_exception, add_breadcrumb, lunaryLogger, logfireLogger, prometheusLogger, slack_app
    custom_pricing: bool = False
    stream_options = None

    def __init__(
        self,
        model: str,
        messages,
        stream,
        call_type,
        start_time,
        litellm_call_id: str,
        function_id: str,
        litellm_trace_id: Optional[str] = None,
        dynamic_input_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        dynamic_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        dynamic_async_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        dynamic_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        dynamic_async_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        kwargs: Optional[Dict] = None,
    ):
        _input: Optional[str] = messages  # save original value of messages
        if messages is not None:
            if isinstance(messages, str):
                messages = [
                    {"role": "user", "content": messages}
                ]  # convert text completion input to the chat completion format
            elif (
                isinstance(messages, list)
                and len(messages) > 0
                and isinstance(messages[0], str)
            ):
                new_messages = []
                for m in messages:
                    new_messages.append({"role": "user", "content": m})
                messages = new_messages
        self.model = model
        self.messages = copy.deepcopy(messages)
        self.stream = stream
        self.start_time = start_time  # log the call start time
        self.call_type = call_type
        self.litellm_call_id = litellm_call_id
        self.litellm_trace_id = litellm_trace_id
        self.function_id = function_id
        self.streaming_chunks: List[Any] = []  # for generating complete stream response
        self.sync_streaming_chunks: List[Any] = (
            []
        )  # for generating complete stream response

        # Initialize dynamic callbacks
        self.dynamic_input_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_input_callbacks
        self.dynamic_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_success_callbacks
        self.dynamic_async_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_async_success_callbacks
        self.dynamic_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_failure_callbacks
        self.dynamic_async_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_async_failure_callbacks

        # Process dynamic callbacks
        self.process_dynamic_callbacks()

        ## DYNAMIC LANGFUSE / GCS / logging callback KEYS ##
        self.standard_callback_dynamic_params: StandardCallbackDynamicParams = (
            self.initialize_standard_callback_dynamic_params(kwargs)
        )

        ## TIME TO FIRST TOKEN LOGGING ##
        self.completion_start_time: Optional[datetime.datetime] = None
        self._llm_caching_handler: Optional[LLMCachingHandler] = None

        # INITIAL LITELLM_PARAMS
        litellm_params = {}
        if kwargs is not None:
            litellm_params = get_litellm_params(**kwargs)
            litellm_params = scrub_sensitive_keys_in_metadata(litellm_params)

        self.litellm_params = litellm_params

        self.model_call_details: Dict[str, Any] = {
            "litellm_trace_id": litellm_trace_id,
            "litellm_call_id": litellm_call_id,
            "input": _input,
            "litellm_params": litellm_params,
        }

    def process_dynamic_callbacks(self):
        """
        Initializes CustomLogger compatible callbacks in self.dynamic_* callbacks

        If a callback is in litellm._known_custom_logger_compatible_callbacks, it needs to be intialized and added to the respective dynamic_* callback list.
        """
        # Process input callbacks
        self.dynamic_input_callbacks = self._process_dynamic_callback_list(
            self.dynamic_input_callbacks, dynamic_callbacks_type="input"
        )

        # Process failure callbacks
        self.dynamic_failure_callbacks = self._process_dynamic_callback_list(
            self.dynamic_failure_callbacks, dynamic_callbacks_type="failure"
        )

        # Process async failure callbacks
        self.dynamic_async_failure_callbacks = self._process_dynamic_callback_list(
            self.dynamic_async_failure_callbacks, dynamic_callbacks_type="async_failure"
        )

        # Process success callbacks
        self.dynamic_success_callbacks = self._process_dynamic_callback_list(
            self.dynamic_success_callbacks, dynamic_callbacks_type="success"
        )

        # Process async success callbacks
        self.dynamic_async_success_callbacks = self._process_dynamic_callback_list(
            self.dynamic_async_success_callbacks, dynamic_callbacks_type="async_success"
        )

    def _process_dynamic_callback_list(
        self,
        callback_list: Optional[List[Union[str, Callable, CustomLogger]]],
        dynamic_callbacks_type: Literal[
            "input", "success", "failure", "async_success", "async_failure"
        ],
    ) -> Optional[List[Union[str, Callable, CustomLogger]]]:
        """
        Helper function to initialize CustomLogger compatible callbacks in self.dynamic_* callbacks

        - If a callback is in litellm._known_custom_logger_compatible_callbacks,
        replace the string with the initialized callback class.
        - If dynamic callback is a "success" callback that is a known_custom_logger_compatible_callbacks then add it to dynamic_async_success_callbacks
        - If dynamic callback is a "failure" callback that is a known_custom_logger_compatible_callbacks then add it to dynamic_failure_callbacks
        """
        if callback_list is None:
            return None

        processed_list: List[Union[str, Callable, CustomLogger]] = []
        for callback in callback_list:
            if (
                isinstance(callback, str)
                and callback in litellm._known_custom_logger_compatible_callbacks
            ):
                callback_class = _init_custom_logger_compatible_class(
                    callback, internal_usage_cache=None, llm_router=None  # type: ignore
                )
                if callback_class is not None:
                    processed_list.append(callback_class)

                    # If processing dynamic_success_callbacks, add to dynamic_async_success_callbacks
                    if dynamic_callbacks_type == "success":
                        if self.dynamic_async_success_callbacks is None:
                            self.dynamic_async_success_callbacks = []
                        self.dynamic_async_success_callbacks.append(callback_class)
                    elif dynamic_callbacks_type == "failure":
                        if self.dynamic_async_failure_callbacks is None:
                            self.dynamic_async_failure_callbacks = []
                        self.dynamic_async_failure_callbacks.append(callback_class)
            else:
                processed_list.append(callback)
        return processed_list

    def initialize_standard_callback_dynamic_params(
        self, kwargs: Optional[Dict] = None
    ) -> StandardCallbackDynamicParams:
        """
        Initialize the standard callback dynamic params from the kwargs

        checks if langfuse_secret_key, gcs_bucket_name in kwargs and sets the corresponding attributes in StandardCallbackDynamicParams
        """
        return _initialize_standard_callback_dynamic_params(kwargs)

    def update_environment_variables(
        self,
        litellm_params: Dict,
        optional_params: Dict,
        model: Optional[str] = None,
        user: Optional[str] = None,
        **additional_params,
    ):
        self.optional_params = optional_params
        if model is not None:
            self.model = model
        self.user = user
        self.litellm_params = {
            **self.litellm_params,
            **scrub_sensitive_keys_in_metadata(litellm_params),
        }
        self.logger_fn = litellm_params.get("logger_fn", None)
        verbose_logger.debug(f"self.optional_params: {self.optional_params}")

        self.model_call_details.update(
            {
                "model": self.model,
                "messages": self.messages,
                "optional_params": self.optional_params,
                "litellm_params": self.litellm_params,
                "start_time": self.start_time,
                "stream": self.stream,
                "user": user,
                "call_type": str(self.call_type),
                "litellm_call_id": self.litellm_call_id,
                "completion_start_time": self.completion_start_time,
                "standard_callback_dynamic_params": self.standard_callback_dynamic_params,
                **self.optional_params,
                **additional_params,
            }
        )

        ## check if stream options is set ##  - used by CustomStreamWrapper for easy instrumentation
        if "stream_options" in additional_params:
            self.stream_options = additional_params["stream_options"]
        ## check if custom pricing set ##
        if (
            litellm_params.get("input_cost_per_token") is not None
            or litellm_params.get("input_cost_per_second") is not None
            or litellm_params.get("output_cost_per_token") is not None
            or litellm_params.get("output_cost_per_second") is not None
        ):
            self.custom_pricing = True

        if "custom_llm_provider" in self.model_call_details:
            self.custom_llm_provider = self.model_call_details["custom_llm_provider"]

    def get_chat_completion_prompt(
        self,
        model: str,
        messages: List[AllMessageValues],
        non_default_params: dict,
        prompt_id: str,
        prompt_variables: Optional[dict],
    ) -> Tuple[str, List[AllMessageValues], dict]:

        for (
            custom_logger_compatible_callback
        ) in litellm._known_custom_logger_compatible_callbacks:
            if model.startswith(custom_logger_compatible_callback):
                custom_logger = _init_custom_logger_compatible_class(
                    logging_integration=custom_logger_compatible_callback,
                    internal_usage_cache=None,
                    llm_router=None,
                )

                if custom_logger is None:
                    continue
                old_name = model

                model, messages, non_default_params = (
                    custom_logger.get_chat_completion_prompt(
                        model=model,
                        messages=messages,
                        non_default_params=non_default_params,
                        prompt_id=prompt_id,
                        prompt_variables=prompt_variables,
                        dynamic_callback_params=self.standard_callback_dynamic_params,
                    )
                )
                self.model_call_details["prompt_integration"] = old_name.split("/")[0]
        self.messages = messages

        return model, messages, non_default_params

    def _pre_call(self, input, api_key, model=None, additional_args={}):
        """
        Common helper function across the sync + async pre-call function
        """

        self.model_call_details["input"] = input
        self.model_call_details["api_key"] = api_key
        self.model_call_details["additional_args"] = additional_args
        self.model_call_details["log_event_type"] = "pre_api_call"
        if (
            model
        ):  # if model name was changes pre-call, overwrite the initial model call name with the new one
            self.model_call_details["model"] = model

    def pre_call(self, input, api_key, model=None, additional_args={}):  # noqa: PLR0915
        # Log the exact input to the LLM API
        litellm.error_logs["PRE_CALL"] = locals()
        try:
            self._pre_call(
                input=input,
                api_key=api_key,
                model=model,
                additional_args=additional_args,
            )

            # User Logging -> if you pass in a custom logging function
            self._print_llm_call_debugging_log(
                api_base=additional_args.get("api_base", ""),
                headers=additional_args.get("headers", {}),
                additional_args=additional_args,
            )
            # log raw request to provider (like LangFuse) -- if opted in.
            if log_raw_request_response is True:
                _litellm_params = self.model_call_details.get("litellm_params", {})
                _metadata = _litellm_params.get("metadata", {}) or {}
                try:
                    # [Non-blocking Extra Debug Information in metadata]
                    if (
                        turn_off_message_logging is not None
                        and turn_off_message_logging is True
                    ):
                        _metadata["raw_request"] = (
                            "redacted by litellm. \
                            'litellm.turn_off_message_logging=True'"
                        )
                    else:
                        curl_command = self._get_request_curl_command(
                            api_base=additional_args.get("api_base", ""),
                            headers=additional_args.get("headers", {}),
                            additional_args=additional_args,
                            data=additional_args.get("complete_input_dict", {}),
                        )
                        _metadata["raw_request"] = str(curl_command)
                except Exception as e:
                    _metadata["raw_request"] = (
                        "Unable to Log \
                        raw request: {}".format(
                            str(e)
                        )
                    )
            if self.logger_fn and callable(self.logger_fn):
                try:
                    self.logger_fn(
                        self.model_call_details
                    )  # Expectation: any logger function passed in by the user should accept a dict object
                except Exception as e:
                    verbose_logger.exception(
                        "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {}".format(
                            str(e)
                        )
                    )

            self.model_call_details["api_call_start_time"] = datetime.datetime.now()
            # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made
            callbacks = litellm.input_callback + (self.dynamic_input_callbacks or [])
            for callback in callbacks:
                try:
                    if callback == "supabase" and supabaseClient is not None:
                        verbose_logger.debug("reaches supabase for logging!")
                        model = self.model_call_details["model"]
                        messages = self.model_call_details["input"]
                        verbose_logger.debug(f"supabaseClient: {supabaseClient}")
                        supabaseClient.input_log_event(
                            model=model,
                            messages=messages,
                            end_user=self.model_call_details.get("user", "default"),
                            litellm_call_id=self.litellm_params["litellm_call_id"],
                            print_verbose=print_verbose,
                        )
                    elif callback == "sentry" and add_breadcrumb:
                        try:
                            details_to_log = copy.deepcopy(self.model_call_details)
                        except Exception:
                            details_to_log = self.model_call_details
                        if litellm.turn_off_message_logging:
                            # make a copy of the _model_Call_details and log it
                            details_to_log.pop("messages", None)
                            details_to_log.pop("input", None)
                            details_to_log.pop("prompt", None)

                        add_breadcrumb(
                            category="litellm.llm_call",
                            message=f"Model Call Details pre-call: {details_to_log}",
                            level="info",
                        )

                    elif isinstance(callback, CustomLogger):  # custom logger class
                        callback.log_pre_api_call(
                            model=self.model,
                            messages=self.messages,
                            kwargs=self.model_call_details,
                        )
                    elif (
                        callable(callback) and customLogger is not None
                    ):  # custom logger functions
                        customLogger.log_input_event(
                            model=self.model,
                            messages=self.messages,
                            kwargs=self.model_call_details,
                            print_verbose=print_verbose,
                            callback_func=callback,
                        )
                except Exception as e:
                    verbose_logger.exception(
                        "litellm.Logging.pre_call(): Exception occured - {}".format(
                            str(e)
                        )
                    )
                    verbose_logger.debug(
                        f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
                    )
                    if capture_exception:  # log this error to sentry for debugging
                        capture_exception(e)
        except Exception as e:
            verbose_logger.exception(
                "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {}".format(
                    str(e)
                )
            )
            verbose_logger.error(
                f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
            )
            if capture_exception:  # log this error to sentry for debugging
                capture_exception(e)

    def _print_llm_call_debugging_log(
        self,
        api_base: str,
        headers: dict,
        additional_args: dict,
    ):
        """
        Internal debugging helper function

        Prints the RAW curl command sent from LiteLLM
        """
        if _is_debugging_on():
            if json_logs:
                masked_headers = self._get_masked_headers(headers)
                verbose_logger.debug(
                    "POST Request Sent from LiteLLM",
                    extra={"api_base": {api_base}, **masked_headers},
                )
            else:
                headers = additional_args.get("headers", {})
                if headers is None:
                    headers = {}
                data = additional_args.get("complete_input_dict", {})
                api_base = str(additional_args.get("api_base", ""))
                if "key=" in api_base:
                    # Find the position of "key=" in the string
                    key_index = api_base.find("key=") + 4
                    # Mask the last 5 characters after "key="
                    masked_api_base = api_base[:key_index] + "*" * 5 + api_base[-4:]
                else:
                    masked_api_base = api_base
                self.model_call_details["litellm_params"]["api_base"] = masked_api_base

                curl_command = self._get_request_curl_command(
                    api_base=api_base,
                    headers=headers,
                    additional_args=additional_args,
                    data=data,
                )
                verbose_logger.debug(f"\033[92m{curl_command}\033[0m\n")

    def _get_request_curl_command(
        self, api_base: str, headers: dict, additional_args: dict, data: dict
    ) -> str:
        curl_command = "\n\nPOST Request Sent from LiteLLM:\n"
        curl_command += "curl -X POST \\\n"
        curl_command += f"{api_base} \\\n"
        masked_headers = self._get_masked_headers(headers)
        formatted_headers = " ".join(
            [f"-H '{k}: {v}'" for k, v in masked_headers.items()]
        )

        curl_command += (
            f"{formatted_headers} \\\n" if formatted_headers.strip() != "" else ""
        )
        curl_command += f"-d '{str(data)}'\n"
        if additional_args.get("request_str", None) is not None:
            # print the sagemaker / bedrock client request
            curl_command = "\nRequest Sent from LiteLLM:\n"
            curl_command += additional_args.get("request_str", None)
        elif api_base == "":
            curl_command = str(self.model_call_details)
        return curl_command

    def _get_masked_headers(self, headers: dict):
        """
        Internal debugging helper function

        Masks the headers of the request sent from LiteLLM
        """
        return {
            k: (
                (v[:-44] + "*" * 44)
                if (isinstance(v, str) and len(v) > 44)
                else "*****"
            )
            for k, v in headers.items()
        }

    def post_call(
        self, original_response, input=None, api_key=None, additional_args={}
    ):
        # Log the exact result from the LLM API, for streaming - log the type of response received
        litellm.error_logs["POST_CALL"] = locals()
        if isinstance(original_response, dict):
            original_response = json.dumps(original_response)
        try:
            self.model_call_details["input"] = input
            self.model_call_details["api_key"] = api_key
            self.model_call_details["original_response"] = original_response
            self.model_call_details["additional_args"] = additional_args
            self.model_call_details["log_event_type"] = "post_api_call"

            if json_logs:
                verbose_logger.debug(
                    "RAW RESPONSE:\n{}\n\n".format(
                        self.model_call_details.get(
                            "original_response", self.model_call_details
                        )
                    ),
                )
            else:
                print_verbose(
                    "RAW RESPONSE:\n{}\n\n".format(
                        self.model_call_details.get(
                            "original_response", self.model_call_details
                        )
                    )
                )
            if self.logger_fn and callable(self.logger_fn):
                try:
                    self.logger_fn(
                        self.model_call_details
                    )  # Expectation: any logger function passed in by the user should accept a dict object
                except Exception as e:
                    verbose_logger.exception(
                        "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {}".format(
                            str(e)
                        )
                    )
            original_response = redact_message_input_output_from_logging(
                model_call_details=(
                    self.model_call_details
                    if hasattr(self, "model_call_details")
                    else {}
                ),
                result=original_response,
            )
            # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made

            callbacks = litellm.input_callback + (self.dynamic_input_callbacks or [])
            for callback in callbacks:
                try:
                    if callback == "sentry" and add_breadcrumb:
                        verbose_logger.debug("reaches sentry breadcrumbing")
                        try:
                            details_to_log = copy.deepcopy(self.model_call_details)
                        except Exception:
                            details_to_log = self.model_call_details
                        if litellm.turn_off_message_logging:
                            # make a copy of the _model_Call_details and log it
                            details_to_log.pop("messages", None)
                            details_to_log.pop("input", None)
                            details_to_log.pop("prompt", None)

                        add_breadcrumb(
                            category="litellm.llm_call",
                            message=f"Model Call Details post-call: {details_to_log}",
                            level="info",
                        )
                    elif isinstance(callback, CustomLogger):  # custom logger class
                        callback.log_post_api_call(
                            kwargs=self.model_call_details,
                            response_obj=None,
                            start_time=self.start_time,
                            end_time=None,
                        )
                except Exception as e:
                    verbose_logger.exception(
                        "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while post-call logging with integrations {}".format(
                            str(e)
                        )
                    )
                    verbose_logger.debug(
                        f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
                    )
                    if capture_exception:  # log this error to sentry for debugging
                        capture_exception(e)
        except Exception as e:
            verbose_logger.exception(
                "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {}".format(
                    str(e)
                )
            )

    def get_response_ms(self) -> float:
        return (
            self.model_call_details.get("end_time", datetime.datetime.now())
            - self.model_call_details.get("start_time", datetime.datetime.now())
        ).total_seconds() * 1000

    def _response_cost_calculator(
        self,
        result: Union[
            ModelResponse,
            ModelResponseStream,
            EmbeddingResponse,
            ImageResponse,
            TranscriptionResponse,
            TextCompletionResponse,
            HttpxBinaryResponseContent,
            RerankResponse,
            Batch,
            FineTuningJob,
        ],
        cache_hit: Optional[bool] = None,
    ) -> Optional[float]:
        """
        Calculate response cost using result + logging object variables.

        used for consistent cost calculation across response headers + logging integrations.
        """

        ## RESPONSE COST ##
        custom_pricing = use_custom_pricing_for_model(
            litellm_params=(
                self.litellm_params if hasattr(self, "litellm_params") else None
            )
        )

        prompt = ""  # use for tts cost calc
        _input = self.model_call_details.get("input", None)
        if _input is not None and isinstance(_input, str):
            prompt = _input

        if cache_hit is None:
            cache_hit = self.model_call_details.get("cache_hit", False)

        try:
            response_cost_calculator_kwargs = {
                "response_object": result,
                "model": self.model,
                "cache_hit": cache_hit,
                "custom_llm_provider": self.model_call_details.get(
                    "custom_llm_provider", None
                ),
                "base_model": _get_base_model_from_metadata(
                    model_call_details=self.model_call_details
                ),
                "call_type": self.call_type,
                "optional_params": self.optional_params,
                "custom_pricing": custom_pricing,
                "prompt": prompt,
            }
        except Exception as e:  # error creating kwargs for cost calculation
            debug_info = StandardLoggingModelCostFailureDebugInformation(
                error_str=str(e),
                traceback_str=traceback.format_exc(),
            )
            verbose_logger.debug(
                f"response_cost_failure_debug_information: {debug_info}"
            )
            self.model_call_details["response_cost_failure_debug_information"] = (
                debug_info
            )
            return None

        try:
            response_cost = litellm.response_cost_calculator(
                **response_cost_calculator_kwargs
            )
            verbose_logger.debug(f"response_cost: {response_cost}")
            return response_cost
        except Exception as e:  # error calculating cost
            debug_info = StandardLoggingModelCostFailureDebugInformation(
                error_str=str(e),
                traceback_str=_get_traceback_str_for_error(str(e)),
                model=response_cost_calculator_kwargs["model"],
                cache_hit=response_cost_calculator_kwargs["cache_hit"],
                custom_llm_provider=response_cost_calculator_kwargs[
                    "custom_llm_provider"
                ],
                base_model=response_cost_calculator_kwargs["base_model"],
                call_type=response_cost_calculator_kwargs["call_type"],
                custom_pricing=response_cost_calculator_kwargs["custom_pricing"],
            )
            verbose_logger.debug(
                f"response_cost_failure_debug_information: {debug_info}"
            )
            self.model_call_details["response_cost_failure_debug_information"] = (
                debug_info
            )

        return None

    def should_run_callback(
        self, callback: litellm.CALLBACK_TYPES, litellm_params: dict, event_hook: str
    ) -> bool:

        if litellm.global_disable_no_log_param:
            return True

        if litellm_params.get("no-log", False) is True:
            # proxy cost tracking cal backs should run

            if not (
                isinstance(callback, CustomLogger)
                and "_PROXY_" in callback.__class__.__name__
            ):
                verbose_logger.debug(
                    f"no-log request, skipping logging for {event_hook} event"
                )
                return False
        return True

    def _success_handler_helper_fn(
        self,
        result=None,
        start_time=None,
        end_time=None,
        cache_hit=None,
        standard_logging_object: Optional[StandardLoggingPayload] = None,
    ):
        try:
            if start_time is None:
                start_time = self.start_time
            if end_time is None:
                end_time = datetime.datetime.now()
            if self.completion_start_time is None:
                self.completion_start_time = end_time
                self.model_call_details["completion_start_time"] = (
                    self.completion_start_time
                )
            self.model_call_details["log_event_type"] = "successful_api_call"
            self.model_call_details["end_time"] = end_time
            self.model_call_details["cache_hit"] = cache_hit
            ## if model in model cost map - log the response cost
            ## else set cost to None
            if (
                standard_logging_object is None
                and result is not None
                and self.stream is not True
            ):  # handle streaming separately
                if (
                    isinstance(result, ModelResponse)
                    or isinstance(result, ModelResponseStream)
                    or isinstance(result, EmbeddingResponse)
                    or isinstance(result, ImageResponse)
                    or isinstance(result, TranscriptionResponse)
                    or isinstance(result, TextCompletionResponse)
                    or isinstance(result, HttpxBinaryResponseContent)  # tts
                    or isinstance(result, RerankResponse)
                    or isinstance(result, Batch)
                    or isinstance(result, FineTuningJob)
                ):
                    ## HIDDEN PARAMS ##
                    hidden_params = getattr(result, "_hidden_params", {})
                    if hidden_params:
                        # add to metadata for logging
                        if self.model_call_details.get("litellm_params") is not None:
                            self.model_call_details["litellm_params"].setdefault(
                                "metadata", {}
                            )
                            if (
                                self.model_call_details["litellm_params"]["metadata"]
                                is None
                            ):
                                self.model_call_details["litellm_params"][
                                    "metadata"
                                ] = {}

                            self.model_call_details["litellm_params"]["metadata"][  # type: ignore
                                "hidden_params"
                            ] = getattr(
                                result, "_hidden_params", {}
                            )
                    ## RESPONSE COST - Only calculate if not in hidden_params ##
                    if "response_cost" in hidden_params:
                        self.model_call_details["response_cost"] = hidden_params[
                            "response_cost"
                        ]
                    else:
                        self.model_call_details["response_cost"] = (
                            self._response_cost_calculator(result=result)
                        )
                    ## STANDARDIZED LOGGING PAYLOAD

                    self.model_call_details["standard_logging_object"] = (
                        get_standard_logging_object_payload(
                            kwargs=self.model_call_details,
                            init_response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            logging_obj=self,
                            status="success",
                        )
                    )
                elif isinstance(result, dict):  # pass-through endpoints
                    ## STANDARDIZED LOGGING PAYLOAD
                    self.model_call_details["standard_logging_object"] = (
                        get_standard_logging_object_payload(
                            kwargs=self.model_call_details,
                            init_response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            logging_obj=self,
                            status="success",
                        )
                    )
            elif standard_logging_object is not None:
                self.model_call_details["standard_logging_object"] = (
                    standard_logging_object
                )
            else:  # streaming chunks + image gen.
                self.model_call_details["response_cost"] = None

            if (
                litellm.max_budget
                and self.stream is False
                and result is not None
                and isinstance(result, dict)
                and "content" in result
            ):
                time_diff = (end_time - start_time).total_seconds()
                float_diff = float(time_diff)
                litellm._current_cost += litellm.completion_cost(
                    model=self.model,
                    prompt="",
                    completion=getattr(result, "content", ""),
                    total_time=float_diff,
                )

            return start_time, end_time, result
        except Exception as e:
            raise Exception(f"[Non-Blocking] LiteLLM.Success_Call Error: {str(e)}")

    def success_handler(  # noqa: PLR0915
        self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs
    ):
        verbose_logger.debug(
            f"Logging Details LiteLLM-Success Call: Cache_hit={cache_hit}"
        )
        start_time, end_time, result = self._success_handler_helper_fn(
            start_time=start_time,
            end_time=end_time,
            result=result,
            cache_hit=cache_hit,
            standard_logging_object=kwargs.get("standard_logging_object", None),
        )
        try:

            ## BUILD COMPLETE STREAMED RESPONSE
            complete_streaming_response: Optional[
                Union[ModelResponse, TextCompletionResponse]
            ] = None
            if "complete_streaming_response" in self.model_call_details:
                return  # break out of this.
            complete_streaming_response = self._get_assembled_streaming_response(
                result=result,
                start_time=start_time,
                end_time=end_time,
                is_async=False,
                streaming_chunks=self.sync_streaming_chunks,
            )
            if complete_streaming_response is not None:
                verbose_logger.debug(
                    "Logging Details LiteLLM-Success Call streaming complete"
                )
                self.model_call_details["complete_streaming_response"] = (
                    complete_streaming_response
                )
                self.model_call_details["response_cost"] = (
                    self._response_cost_calculator(result=complete_streaming_response)
                )
                ## STANDARDIZED LOGGING PAYLOAD
                self.model_call_details["standard_logging_object"] = (
                    get_standard_logging_object_payload(
                        kwargs=self.model_call_details,
                        init_response_obj=complete_streaming_response,
                        start_time=start_time,
                        end_time=end_time,
                        logging_obj=self,
                        status="success",
                    )
                )
            callbacks = self.get_combined_callback_list(
                dynamic_success_callbacks=self.dynamic_success_callbacks,
                global_callbacks=litellm.success_callback,
            )

            ## REDACT MESSAGES ##
            result = redact_message_input_output_from_logging(
                model_call_details=(
                    self.model_call_details
                    if hasattr(self, "model_call_details")
                    else {}
                ),
                result=result,
            )
            ## LOGGING HOOK ##
            for callback in callbacks:
                if isinstance(callback, CustomLogger):

                    self.model_call_details, result = callback.logging_hook(
                        kwargs=self.model_call_details,
                        result=result,
                        call_type=self.call_type,
                    )

            for callback in callbacks:
                try:
                    litellm_params = self.model_call_details.get("litellm_params", {})
                    should_run = self.should_run_callback(
                        callback=callback,
                        litellm_params=litellm_params,
                        event_hook="success_handler",
                    )
                    if not should_run:
                        continue
                    if callback == "promptlayer" and promptLayerLogger is not None:
                        print_verbose("reaches promptlayer for logging!")
                        promptLayerLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "supabase" and supabaseClient is not None:
                        print_verbose("reaches supabase for logging!")
                        kwargs = self.model_call_details

                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            if "complete_streaming_response" not in kwargs:
                                continue
                            else:
                                print_verbose("reaches supabase for streaming logging!")
                                result = kwargs["complete_streaming_response"]

                        model = kwargs["model"]
                        messages = kwargs["messages"]
                        optional_params = kwargs.get("optional_params", {})
                        litellm_params = kwargs.get("litellm_params", {})
                        supabaseClient.log_event(
                            model=model,
                            messages=messages,
                            end_user=optional_params.get("user", "default"),
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            litellm_call_id=litellm_params.get(
                                "litellm_call_id", str(uuid.uuid4())
                            ),
                            print_verbose=print_verbose,
                        )
                    if callback == "wandb" and weightsBiasesLogger is not None:
                        print_verbose("reaches wandb for logging!")
                        weightsBiasesLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "logfire" and logfireLogger is not None:
                        verbose_logger.debug("reaches logfire for success logging!")
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v

                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            if "complete_streaming_response" not in kwargs:
                                continue
                            else:
                                print_verbose("reaches logfire for streaming logging!")
                                result = kwargs["complete_streaming_response"]

                        logfireLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            level=LogfireLevel.INFO.value,  # type: ignore
                        )

                    if callback == "lunary" and lunaryLogger is not None:
                        print_verbose("reaches lunary for logging!")
                        model = self.model
                        kwargs = self.model_call_details

                        input = kwargs.get("messages", kwargs.get("input", None))

                        type = (
                            "embed"
                            if self.call_type == CallTypes.embedding.value
                            else "llm"
                        )

                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            if "complete_streaming_response" not in kwargs:
                                continue
                            else:
                                result = kwargs["complete_streaming_response"]

                        lunaryLogger.log_event(
                            type=type,
                            kwargs=kwargs,
                            event="end",
                            model=model,
                            input=input,
                            user_id=kwargs.get("user", None),
                            # user_props=self.model_call_details.get("user_props", None),
                            extra=kwargs.get("optional_params", {}),
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            run_id=self.litellm_call_id,
                            print_verbose=print_verbose,
                        )
                    if callback == "helicone" and heliconeLogger is not None:
                        print_verbose("reaches helicone for logging!")
                        model = self.model
                        messages = self.model_call_details["input"]
                        kwargs = self.model_call_details

                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            if "complete_streaming_response" not in kwargs:
                                continue
                            else:
                                print_verbose("reaches helicone for streaming logging!")
                                result = kwargs["complete_streaming_response"]

                        heliconeLogger.log_success(
                            model=model,
                            messages=messages,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            kwargs=kwargs,
                        )
                    if callback == "langfuse":
                        global langFuseLogger
                        print_verbose("reaches langfuse for success logging!")
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v
                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            verbose_logger.debug(
                                f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}"
                            )
                            if complete_streaming_response is None:
                                continue
                            else:
                                print_verbose("reaches langfuse for streaming logging!")
                                result = kwargs["complete_streaming_response"]

                        langfuse_logger_to_use = LangFuseHandler.get_langfuse_logger_for_request(
                            globalLangfuseLogger=langFuseLogger,
                            standard_callback_dynamic_params=self.standard_callback_dynamic_params,
                            in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
                        )
                        if langfuse_logger_to_use is not None:
                            _response = langfuse_logger_to_use._old_log_event(
                                kwargs=kwargs,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                                user_id=kwargs.get("user", None),
                                print_verbose=print_verbose,
                            )
                            if _response is not None and isinstance(_response, dict):
                                _trace_id = _response.get("trace_id", None)
                                if _trace_id is not None:
                                    in_memory_trace_id_cache.set_cache(
                                        litellm_call_id=self.litellm_call_id,
                                        service_name="langfuse",
                                        trace_id=_trace_id,
                                    )
                    if callback == "generic":
                        global genericAPILogger
                        verbose_logger.debug("reaches langfuse for success logging!")
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v
                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            verbose_logger.debug(
                                f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}"
                            )
                            if complete_streaming_response is None:
                                continue
                            else:
                                print_verbose("reaches langfuse for streaming logging!")
                                result = kwargs["complete_streaming_response"]
                        if genericAPILogger is None:
                            genericAPILogger = GenericAPILogger()  # type: ignore
                        genericAPILogger.log_event(
                            kwargs=kwargs,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            user_id=kwargs.get("user", None),
                            print_verbose=print_verbose,
                        )
                    if callback == "greenscale" and greenscaleLogger is not None:
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v
                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            verbose_logger.debug(
                                f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}"
                            )
                            if complete_streaming_response is None:
                                continue
                            else:
                                print_verbose(
                                    "reaches greenscale for streaming logging!"
                                )
                                result = kwargs["complete_streaming_response"]

                        greenscaleLogger.log_event(
                            kwargs=kwargs,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "athina" and athinaLogger is not None:
                        deep_copy = {}
                        for k, v in self.model_call_details.items():
                            deep_copy[k] = v
                        athinaLogger.log_event(
                            kwargs=deep_copy,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "traceloop":
                        deep_copy = {}
                        for k, v in self.model_call_details.items():
                            if k != "original_response":
                                deep_copy[k] = v
                        traceloopLogger.log_event(
                            kwargs=deep_copy,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            user_id=kwargs.get("user", None),
                            print_verbose=print_verbose,
                        )
                    if callback == "s3":
                        global s3Logger
                        if s3Logger is None:
                            s3Logger = S3Logger()
                        if self.stream:
                            if "complete_streaming_response" in self.model_call_details:
                                print_verbose(
                                    "S3Logger Logger: Got Stream Event - Completed Stream Response"
                                )
                                s3Logger.log_event(
                                    kwargs=self.model_call_details,
                                    response_obj=self.model_call_details[
                                        "complete_streaming_response"
                                    ],
                                    start_time=start_time,
                                    end_time=end_time,
                                    print_verbose=print_verbose,
                                )
                            else:
                                print_verbose(
                                    "S3Logger Logger: Got Stream Event - No complete stream response as yet"
                                )
                        else:
                            s3Logger.log_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                                print_verbose=print_verbose,
                            )

                    if (
                        callback == "openmeter"
                        and self.model_call_details.get("litellm_params", {}).get(
                            "acompletion", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aembedding", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aimage_generation", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "atranscription", False
                        )
                        is not True
                    ):
                        global openMeterLogger
                        if openMeterLogger is None:
                            print_verbose("Instantiates openmeter client")
                            openMeterLogger = OpenMeterLogger()
                        if self.stream and complete_streaming_response is None:
                            openMeterLogger.log_stream_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                        else:
                            if self.stream and complete_streaming_response:
                                self.model_call_details["complete_response"] = (
                                    self.model_call_details.get(
                                        "complete_streaming_response", {}
                                    )
                                )
                                result = self.model_call_details["complete_response"]
                            openMeterLogger.log_success_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )

                    if (
                        isinstance(callback, CustomLogger)
                        and self.model_call_details.get("litellm_params", {}).get(
                            "acompletion", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aembedding", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aimage_generation", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "atranscription", False
                        )
                        is not True
                        and self.call_type
                        != CallTypes.pass_through.value  # pass-through endpoints call async_log_success_event
                    ):  # custom logger class
                        if self.stream and complete_streaming_response is None:
                            callback.log_stream_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                        else:
                            if self.stream and complete_streaming_response:
                                self.model_call_details["complete_response"] = (
                                    self.model_call_details.get(
                                        "complete_streaming_response", {}
                                    )
                                )
                                result = self.model_call_details["complete_response"]

                            callback.log_success_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                    if (
                        callable(callback) is True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "acompletion", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aembedding", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aimage_generation", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "atranscription", False
                        )
                        is not True
                        and customLogger is not None
                    ):  # custom logger functions
                        print_verbose(
                            "success callbacks: Running Custom Callback Function - {}".format(
                                callback
                            )
                        )

                        customLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            callback_func=callback,
                        )

                except Exception as e:
                    print_verbose(
                        f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging with integrations {traceback.format_exc()}"
                    )
                    print_verbose(
                        f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
                    )
                    if capture_exception:  # log this error to sentry for debugging
                        capture_exception(e)
        except Exception as e:
            verbose_logger.exception(
                "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {}".format(
                    str(e)
                ),
            )

    async def async_success_handler(  # noqa: PLR0915
        self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs
    ):
        """
        Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
        """
        print_verbose(
            "Logging Details LiteLLM-Async Success Call, cache_hit={}".format(cache_hit)
        )
        start_time, end_time, result = self._success_handler_helper_fn(
            start_time=start_time,
            end_time=end_time,
            result=result,
            cache_hit=cache_hit,
            standard_logging_object=kwargs.get("standard_logging_object", None),
        )
        ## BUILD COMPLETE STREAMED RESPONSE
        if "async_complete_streaming_response" in self.model_call_details:
            return  # break out of this.
        complete_streaming_response: Optional[
            Union[ModelResponse, TextCompletionResponse]
        ] = self._get_assembled_streaming_response(
            result=result,
            start_time=start_time,
            end_time=end_time,
            is_async=True,
            streaming_chunks=self.streaming_chunks,
        )

        if complete_streaming_response is not None:
            print_verbose("Async success callbacks: Got a complete streaming response")

            self.model_call_details["async_complete_streaming_response"] = (
                complete_streaming_response
            )
            try:
                if self.model_call_details.get("cache_hit", False) is True:
                    self.model_call_details["response_cost"] = 0.0
                else:
                    # check if base_model set on azure
                    _get_base_model_from_metadata(
                        model_call_details=self.model_call_details
                    )
                    # base_model defaults to None if not set on model_info
                    self.model_call_details["response_cost"] = (
                        self._response_cost_calculator(
                            result=complete_streaming_response
                        )
                    )

                verbose_logger.debug(
                    f"Model={self.model}; cost={self.model_call_details['response_cost']}"
                )
            except litellm.NotFoundError:
                verbose_logger.warning(
                    f"Model={self.model} not found in completion cost map. Setting 'response_cost' to None"
                )
                self.model_call_details["response_cost"] = None

            ## STANDARDIZED LOGGING PAYLOAD
            self.model_call_details["standard_logging_object"] = (
                get_standard_logging_object_payload(
                    kwargs=self.model_call_details,
                    init_response_obj=complete_streaming_response,
                    start_time=start_time,
                    end_time=end_time,
                    logging_obj=self,
                    status="success",
                )
            )
        callbacks = self.get_combined_callback_list(
            dynamic_success_callbacks=self.dynamic_async_success_callbacks,
            global_callbacks=litellm._async_success_callback,
        )

        result = redact_message_input_output_from_logging(
            model_call_details=(
                self.model_call_details if hasattr(self, "model_call_details") else {}
            ),
            result=result,
        )

        ## LOGGING HOOK ##

        for callback in callbacks:
            if isinstance(callback, CustomGuardrail):
                from litellm.types.guardrails import GuardrailEventHooks

                if (
                    callback.should_run_guardrail(
                        data=self.model_call_details,
                        event_type=GuardrailEventHooks.logging_only,
                    )
                    is not True
                ):
                    continue

                self.model_call_details, result = await callback.async_logging_hook(
                    kwargs=self.model_call_details,
                    result=result,
                    call_type=self.call_type,
                )
            elif isinstance(callback, CustomLogger):
                result = redact_message_input_output_from_custom_logger(
                    result=result, litellm_logging_obj=self, custom_logger=callback
                )
                self.model_call_details, result = await callback.async_logging_hook(
                    kwargs=self.model_call_details,
                    result=result,
                    call_type=self.call_type,
                )

        for callback in callbacks:
            # check if callback can run for this request
            litellm_params = self.model_call_details.get("litellm_params", {})
            should_run = self.should_run_callback(
                callback=callback,
                litellm_params=litellm_params,
                event_hook="async_success_handler",
            )
            if not should_run:
                continue
            try:
                if callback == "openmeter" and openMeterLogger is not None:
                    if self.stream is True:
                        if (
                            "async_complete_streaming_response"
                            in self.model_call_details
                        ):
                            await openMeterLogger.async_log_success_event(
                                kwargs=self.model_call_details,
                                response_obj=self.model_call_details[
                                    "async_complete_streaming_response"
                                ],
                                start_time=start_time,
                                end_time=end_time,
                            )
                        else:
                            await openMeterLogger.async_log_stream_event(  # [TODO]: move this to being an async log stream event function
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                    else:
                        await openMeterLogger.async_log_success_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                        )
                if isinstance(callback, CustomLogger):  # custom logger class
                    if self.stream is True:
                        if (
                            "async_complete_streaming_response"
                            in self.model_call_details
                        ):
                            await callback.async_log_success_event(
                                kwargs=self.model_call_details,
                                response_obj=self.model_call_details[
                                    "async_complete_streaming_response"
                                ],
                                start_time=start_time,
                                end_time=end_time,
                            )
                        else:
                            await callback.async_log_stream_event(  # [TODO]: move this to being an async log stream event function
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                    else:
                        await callback.async_log_success_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                        )
                if callable(callback):  # custom logger functions
                    global customLogger
                    if customLogger is None:
                        customLogger = CustomLogger()
                    if self.stream:
                        if (
                            "async_complete_streaming_response"
                            in self.model_call_details
                        ):
                            await customLogger.async_log_event(
                                kwargs=self.model_call_details,
                                response_obj=self.model_call_details[
                                    "async_complete_streaming_response"
                                ],
                                start_time=start_time,
                                end_time=end_time,
                                print_verbose=print_verbose,
                                callback_func=callback,
                            )
                    else:
                        await customLogger.async_log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            callback_func=callback,
                        )
                if callback == "dynamodb":
                    global dynamoLogger
                    if dynamoLogger is None:
                        dynamoLogger = DyanmoDBLogger()
                    if self.stream:
                        if (
                            "async_complete_streaming_response"
                            in self.model_call_details
                        ):
                            print_verbose(
                                "DynamoDB Logger: Got Stream Event - Completed Stream Response"
                            )
                            await dynamoLogger._async_log_event(
                                kwargs=self.model_call_details,
                                response_obj=self.model_call_details[
                                    "async_complete_streaming_response"
                                ],
                                start_time=start_time,
                                end_time=end_time,
                                print_verbose=print_verbose,
                            )
                        else:
                            print_verbose(
                                "DynamoDB Logger: Got Stream Event - No complete stream response as yet"
                            )
                    else:
                        await dynamoLogger._async_log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
            except Exception:
                verbose_logger.error(
                    f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}"
                )
                pass

    def _failure_handler_helper_fn(
        self, exception, traceback_exception, start_time=None, end_time=None
    ):
        if start_time is None:
            start_time = self.start_time
        if end_time is None:
            end_time = datetime.datetime.now()

        # on some exceptions, model_call_details is not always initialized, this ensures that we still log those exceptions
        if not hasattr(self, "model_call_details"):
            self.model_call_details = {}

        self.model_call_details["log_event_type"] = "failed_api_call"
        self.model_call_details["exception"] = exception
        self.model_call_details["traceback_exception"] = traceback_exception
        self.model_call_details["end_time"] = end_time
        self.model_call_details.setdefault("original_response", None)
        self.model_call_details["response_cost"] = 0

        if hasattr(exception, "headers") and isinstance(exception.headers, dict):
            self.model_call_details.setdefault("litellm_params", {})
            metadata = (
                self.model_call_details["litellm_params"].get("metadata", {}) or {}
            )
            metadata.update(exception.headers)

        ## STANDARDIZED LOGGING PAYLOAD

        self.model_call_details["standard_logging_object"] = (
            get_standard_logging_object_payload(
                kwargs=self.model_call_details,
                init_response_obj={},
                start_time=start_time,
                end_time=end_time,
                logging_obj=self,
                status="failure",
                error_str=str(exception),
                original_exception=exception,
            )
        )
        return start_time, end_time

    async def special_failure_handlers(self, exception: Exception):
        """
        Custom events, emitted for specific failures.

        Currently just for router model group rate limit error
        """
        from litellm.types.router import RouterErrors

        litellm_params: dict = self.model_call_details.get("litellm_params") or {}
        metadata = litellm_params.get("metadata") or {}

        ## BASE CASE ## check if rate limit error for model group size 1
        is_base_case = False
        if metadata.get("model_group_size") is not None:
            model_group_size = metadata.get("model_group_size")
            if isinstance(model_group_size, int) and model_group_size == 1:
                is_base_case = True
        ## check if special error ##
        if (
            RouterErrors.no_deployments_available.value not in str(exception)
            and is_base_case is False
        ):
            return

        ## get original model group ##

        model_group = metadata.get("model_group") or None
        for callback in litellm._async_failure_callback:
            if isinstance(callback, CustomLogger):  # custom logger class
                await callback.log_model_group_rate_limit_error(
                    exception=exception,
                    original_model_group=model_group,
                    kwargs=self.model_call_details,
                )  # type: ignore

    def failure_handler(  # noqa: PLR0915
        self, exception, traceback_exception, start_time=None, end_time=None
    ):
        verbose_logger.debug(
            f"Logging Details LiteLLM-Failure Call: {litellm.failure_callback}"
        )
        try:
            start_time, end_time = self._failure_handler_helper_fn(
                exception=exception,
                traceback_exception=traceback_exception,
                start_time=start_time,
                end_time=end_time,
            )
            callbacks = self.get_combined_callback_list(
                dynamic_success_callbacks=self.dynamic_failure_callbacks,
                global_callbacks=litellm.failure_callback,
            )

            result = None  # result sent to all loggers, init this to None incase it's not created

            result = redact_message_input_output_from_logging(
                model_call_details=(
                    self.model_call_details
                    if hasattr(self, "model_call_details")
                    else {}
                ),
                result=result,
            )
            for callback in callbacks:
                try:
                    if callback == "lunary" and lunaryLogger is not None:
                        print_verbose("reaches lunary for logging error!")

                        model = self.model

                        input = self.model_call_details["input"]

                        _type = (
                            "embed"
                            if self.call_type == CallTypes.embedding.value
                            else "llm"
                        )

                        lunaryLogger.log_event(
                            kwargs=self.model_call_details,
                            type=_type,
                            event="error",
                            user_id=self.model_call_details.get("user", "default"),
                            model=model,
                            input=input,
                            error=traceback_exception,
                            run_id=self.litellm_call_id,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "sentry":
                        print_verbose("sending exception to sentry")
                        if capture_exception:
                            capture_exception(exception)
                        else:
                            print_verbose(
                                f"capture exception not initialized: {capture_exception}"
                            )
                    elif callback == "supabase" and supabaseClient is not None:
                        print_verbose("reaches supabase for logging!")
                        print_verbose(f"supabaseClient: {supabaseClient}")
                        supabaseClient.log_event(
                            model=self.model if hasattr(self, "model") else "",
                            messages=self.messages,
                            end_user=self.model_call_details.get("user", "default"),
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            litellm_call_id=self.model_call_details["litellm_call_id"],
                            print_verbose=print_verbose,
                        )
                    if (
                        callable(callback) and customLogger is not None
                    ):  # custom logger functions
                        customLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            callback_func=callback,
                        )
                    if (
                        isinstance(callback, CustomLogger)
                        and self.model_call_details.get("litellm_params", {}).get(
                            "acompletion", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aembedding", False
                        )
                        is not True
                    ):  # custom logger class

                        callback.log_failure_event(
                            start_time=start_time,
                            end_time=end_time,
                            response_obj=result,
                            kwargs=self.model_call_details,
                        )
                    if callback == "langfuse":
                        global langFuseLogger
                        verbose_logger.debug("reaches langfuse for logging failure")
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v
                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        langfuse_logger_to_use = LangFuseHandler.get_langfuse_logger_for_request(
                            globalLangfuseLogger=langFuseLogger,
                            standard_callback_dynamic_params=self.standard_callback_dynamic_params,
                            in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
                        )
                        _response = langfuse_logger_to_use._old_log_event(
                            start_time=start_time,
                            end_time=end_time,
                            response_obj=None,
                            user_id=kwargs.get("user", None),
                            print_verbose=print_verbose,
                            status_message=str(exception),
                            level="ERROR",
                            kwargs=self.model_call_details,
                        )
                        if _response is not None and isinstance(_response, dict):
                            _trace_id = _response.get("trace_id", None)
                            if _trace_id is not None:
                                in_memory_trace_id_cache.set_cache(
                                    litellm_call_id=self.litellm_call_id,
                                    service_name="langfuse",
                                    trace_id=_trace_id,
                                )
                    if callback == "traceloop":
                        traceloopLogger.log_event(
                            start_time=start_time,
                            end_time=end_time,
                            response_obj=None,
                            user_id=self.model_call_details.get("user", None),
                            print_verbose=print_verbose,
                            status_message=str(exception),
                            level="ERROR",
                            kwargs=self.model_call_details,
                        )
                    if callback == "logfire" and logfireLogger is not None:
                        verbose_logger.debug("reaches logfire for failure logging!")
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v
                        kwargs["exception"] = exception

                        logfireLogger.log_event(
                            kwargs=kwargs,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            level=LogfireLevel.ERROR.value,  # type: ignore
                            print_verbose=print_verbose,
                        )

                except Exception as e:
                    print_verbose(
                        f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {str(e)}"
                    )
                    print_verbose(
                        f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
                    )
                    if capture_exception:  # log this error to sentry for debugging
                        capture_exception(e)
        except Exception as e:
            verbose_logger.exception(
                "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging {}".format(
                    str(e)
                )
            )

    async def async_failure_handler(
        self, exception, traceback_exception, start_time=None, end_time=None
    ):
        """
        Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
        """
        await self.special_failure_handlers(exception=exception)
        start_time, end_time = self._failure_handler_helper_fn(
            exception=exception,
            traceback_exception=traceback_exception,
            start_time=start_time,
            end_time=end_time,
        )

        callbacks = self.get_combined_callback_list(
            dynamic_success_callbacks=self.dynamic_async_failure_callbacks,
            global_callbacks=litellm._async_failure_callback,
        )

        result = None  # result sent to all loggers, init this to None incase it's not created

        for callback in callbacks:
            try:
                if isinstance(callback, CustomLogger):  # custom logger class
                    await callback.async_log_failure_event(
                        kwargs=self.model_call_details,
                        response_obj=result,
                        start_time=start_time,
                        end_time=end_time,
                    )  # type: ignore
                if (
                    callable(callback) and customLogger is not None
                ):  # custom logger functions
                    await customLogger.async_log_event(
                        kwargs=self.model_call_details,
                        response_obj=result,
                        start_time=start_time,
                        end_time=end_time,
                        print_verbose=print_verbose,
                        callback_func=callback,
                    )
            except Exception as e:
                verbose_logger.exception(
                    "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure \
                        logging {}\nCallback={}".format(
                        str(e), callback
                    )
                )

    def _get_trace_id(self, service_name: Literal["langfuse"]) -> Optional[str]:
        """
        For the given service (e.g. langfuse), return the trace_id actually logged.

        Used for constructing the url in slack alerting.

        Returns:
            - str: The logged trace id
            - None: If trace id not yet emitted.
        """
        trace_id: Optional[str] = None
        if service_name == "langfuse":
            trace_id = in_memory_trace_id_cache.get_cache(
                litellm_call_id=self.litellm_call_id, service_name=service_name
            )

        return trace_id

    def _get_callback_object(self, service_name: Literal["langfuse"]) -> Optional[Any]:
        """
        Return dynamic callback object.

        Meant to solve issue when doing key-based/team-based logging
        """
        global langFuseLogger

        if service_name == "langfuse":
            if langFuseLogger is None or (
                (
                    self.standard_callback_dynamic_params.get("langfuse_public_key")
                    is not None
                    and self.standard_callback_dynamic_params.get("langfuse_public_key")
                    != langFuseLogger.public_key
                )
                or (
                    self.standard_callback_dynamic_params.get("langfuse_public_key")
                    is not None
                    and self.standard_callback_dynamic_params.get("langfuse_public_key")
                    != langFuseLogger.public_key
                )
                or (
                    self.standard_callback_dynamic_params.get("langfuse_host")
                    is not None
                    and self.standard_callback_dynamic_params.get("langfuse_host")
                    != langFuseLogger.langfuse_host
                )
            ):
                return LangFuseLogger(
                    langfuse_public_key=self.standard_callback_dynamic_params.get(
                        "langfuse_public_key"
                    ),
                    langfuse_secret=self.standard_callback_dynamic_params.get(
                        "langfuse_secret"
                    ),
                    langfuse_host=self.standard_callback_dynamic_params.get(
                        "langfuse_host"
                    ),
                )
            return langFuseLogger

        return None

    def handle_sync_success_callbacks_for_async_calls(
        self,
        result: Any,
        start_time: datetime.datetime,
        end_time: datetime.datetime,
    ) -> None:
        """
        Handles calling success callbacks for Async calls.

        Why: Some callbacks - `langfuse`, `s3` are sync callbacks. We need to call them in the executor.
        """
        if self._should_run_sync_callbacks_for_async_calls() is False:
            return

        executor.submit(
            self.success_handler,
            result,
            start_time,
            end_time,
        )

    def _should_run_sync_callbacks_for_async_calls(self) -> bool:
        """
        Returns:
            - bool: True if sync callbacks should be run for async calls. eg. `langfuse`, `s3`
        """
        _combined_sync_callbacks = self.get_combined_callback_list(
            dynamic_success_callbacks=self.dynamic_success_callbacks,
            global_callbacks=litellm.success_callback,
        )
        _filtered_success_callbacks = self._remove_internal_custom_logger_callbacks(
            _combined_sync_callbacks
        )
        _filtered_success_callbacks = self._remove_internal_litellm_callbacks(
            _filtered_success_callbacks
        )
        return len(_filtered_success_callbacks) > 0

    def get_combined_callback_list(
        self, dynamic_success_callbacks: Optional[List], global_callbacks: List
    ) -> List:
        if dynamic_success_callbacks is None:
            return global_callbacks
        return list(set(dynamic_success_callbacks + global_callbacks))

    def _remove_internal_litellm_callbacks(self, callbacks: List) -> List:
        """
        Creates a filtered list of callbacks, excluding internal LiteLLM callbacks.

        Args:
            callbacks: List of callback functions/strings to filter

        Returns:
            List of filtered callbacks with internal ones removed
        """
        filtered = [
            cb for cb in callbacks if not self._is_internal_litellm_proxy_callback(cb)
        ]

        verbose_logger.debug(f"Filtered callbacks: {filtered}")
        return filtered

    def _get_callback_name(self, cb) -> str:
        """
        Helper to get the name of a callback function

        Args:
            cb: The callback function/string to get the name of

        Returns:
            The name of the callback
        """
        if hasattr(cb, "__name__"):
            return cb.__name__
        if hasattr(cb, "__func__"):
            return cb.__func__.__name__
        return str(cb)

    def _is_internal_litellm_proxy_callback(self, cb) -> bool:
        """Helper to check if a callback is internal"""
        INTERNAL_PREFIXES = [
            "_PROXY",
            "_service_logger.ServiceLogging",
            "sync_deployment_callback_on_success",
        ]
        if isinstance(cb, str):
            return False

        if not callable(cb):
            return True

        cb_name = self._get_callback_name(cb)
        return any(prefix in cb_name for prefix in INTERNAL_PREFIXES)

    def _remove_internal_custom_logger_callbacks(self, callbacks: List) -> List:
        """
        Removes internal custom logger callbacks from the list.
        """
        _new_callbacks = []
        for _c in callbacks:
            if isinstance(_c, CustomLogger):
                continue
            elif (
                isinstance(_c, str)
                and _c in litellm._known_custom_logger_compatible_callbacks
            ):
                continue
            _new_callbacks.append(_c)
        return _new_callbacks

    def _get_assembled_streaming_response(
        self,
        result: Union[ModelResponse, TextCompletionResponse, ModelResponseStream, Any],
        start_time: datetime.datetime,
        end_time: datetime.datetime,
        is_async: bool,
        streaming_chunks: List[Any],
    ) -> Optional[Union[ModelResponse, TextCompletionResponse]]:
        if isinstance(result, ModelResponse):
            return result
        elif isinstance(result, TextCompletionResponse):
            return result
        elif isinstance(result, ModelResponseStream):
            complete_streaming_response: Optional[
                Union[ModelResponse, TextCompletionResponse]
            ] = _assemble_complete_response_from_streaming_chunks(
                result=result,
                start_time=start_time,
                end_time=end_time,
                request_kwargs=self.model_call_details,
                streaming_chunks=streaming_chunks,
                is_async=is_async,
            )
            return complete_streaming_response
        return None


def set_callbacks(callback_list, function_id=None):  # noqa: PLR0915
    """
    Globally sets the callback client
    """
    global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, athinaLogger, heliconeLogger, supabaseClient, lunaryLogger, promptLayerLogger, langFuseLogger, customLogger, weightsBiasesLogger, logfireLogger, dynamoLogger, s3Logger, dataDogLogger, prometheusLogger, greenscaleLogger, openMeterLogger

    try:
        for callback in callback_list:
            if callback == "sentry":
                try:
                    import sentry_sdk
                except ImportError:
                    print_verbose("Package 'sentry_sdk' is missing. Installing it...")
                    subprocess.check_call(
                        [sys.executable, "-m", "pip", "install", "sentry_sdk"]
                    )
                    import sentry_sdk
                sentry_sdk_instance = sentry_sdk
                sentry_trace_rate = (
                    os.environ.get("SENTRY_API_TRACE_RATE")
                    if "SENTRY_API_TRACE_RATE" in os.environ
                    else "1.0"
                )
                sentry_sdk_instance.init(
                    dsn=os.environ.get("SENTRY_DSN"),
                    traces_sample_rate=float(sentry_trace_rate),  # type: ignore
                )
                capture_exception = sentry_sdk_instance.capture_exception
                add_breadcrumb = sentry_sdk_instance.add_breadcrumb
            elif callback == "posthog":
                try:
                    from posthog import Posthog
                except ImportError:
                    print_verbose("Package 'posthog' is missing. Installing it...")
                    subprocess.check_call(
                        [sys.executable, "-m", "pip", "install", "posthog"]
                    )
                    from posthog import Posthog
                posthog = Posthog(
                    project_api_key=os.environ.get("POSTHOG_API_KEY"),
                    host=os.environ.get("POSTHOG_API_URL"),
                )
            elif callback == "slack":
                try:
                    from slack_bolt import App
                except ImportError:
                    print_verbose("Package 'slack_bolt' is missing. Installing it...")
                    subprocess.check_call(
                        [sys.executable, "-m", "pip", "install", "slack_bolt"]
                    )
                    from slack_bolt import App
                slack_app = App(
                    token=os.environ.get("SLACK_API_TOKEN"),
                    signing_secret=os.environ.get("SLACK_API_SECRET"),
                )
                alerts_channel = os.environ["SLACK_API_CHANNEL"]
                print_verbose(f"Initialized Slack App: {slack_app}")
            elif callback == "traceloop":
                traceloopLogger = TraceloopLogger()
            elif callback == "athina":
                athinaLogger = AthinaLogger()
                print_verbose("Initialized Athina Logger")
            elif callback == "helicone":
                heliconeLogger = HeliconeLogger()
            elif callback == "lunary":
                lunaryLogger = LunaryLogger()
            elif callback == "promptlayer":
                promptLayerLogger = PromptLayerLogger()
            elif callback == "langfuse":
                langFuseLogger = LangFuseLogger(
                    langfuse_public_key=None, langfuse_secret=None, langfuse_host=None
                )
            elif callback == "openmeter":
                openMeterLogger = OpenMeterLogger()
            elif callback == "datadog":
                dataDogLogger = DataDogLogger()
            elif callback == "dynamodb":
                dynamoLogger = DyanmoDBLogger()
            elif callback == "s3":
                s3Logger = S3Logger()
            elif callback == "wandb":
                weightsBiasesLogger = WeightsBiasesLogger()
            elif callback == "logfire":
                logfireLogger = LogfireLogger()
            elif callback == "supabase":
                print_verbose("instantiating supabase")
                supabaseClient = Supabase()
            elif callback == "greenscale":
                greenscaleLogger = GreenscaleLogger()
                print_verbose("Initialized Greenscale Logger")
            elif callable(callback):
                customLogger = CustomLogger()
    except Exception as e:
        raise e


def _init_custom_logger_compatible_class(  # noqa: PLR0915
    logging_integration: _custom_logger_compatible_callbacks_literal,
    internal_usage_cache: Optional[DualCache],
    llm_router: Optional[
        Any
    ],  # expect litellm.Router, but typing errors due to circular import
    custom_logger_init_args: Optional[dict] = {},
) -> Optional[CustomLogger]:
    """
    Initialize a custom logger compatible class
    """
    try:
        custom_logger_init_args = custom_logger_init_args or {}
        if logging_integration == "lago":
            for callback in _in_memory_loggers:
                if isinstance(callback, LagoLogger):
                    return callback  # type: ignore

            lago_logger = LagoLogger()
            _in_memory_loggers.append(lago_logger)
            return lago_logger  # type: ignore
        elif logging_integration == "openmeter":
            for callback in _in_memory_loggers:
                if isinstance(callback, OpenMeterLogger):
                    return callback  # type: ignore

            _openmeter_logger = OpenMeterLogger()
            _in_memory_loggers.append(_openmeter_logger)
            return _openmeter_logger  # type: ignore
        elif logging_integration == "braintrust":
            for callback in _in_memory_loggers:
                if isinstance(callback, BraintrustLogger):
                    return callback  # type: ignore

            braintrust_logger = BraintrustLogger()
            _in_memory_loggers.append(braintrust_logger)
            return braintrust_logger  # type: ignore
        elif logging_integration == "langsmith":
            for callback in _in_memory_loggers:
                if isinstance(callback, LangsmithLogger):
                    return callback  # type: ignore

            _langsmith_logger = LangsmithLogger()
            _in_memory_loggers.append(_langsmith_logger)
            return _langsmith_logger  # type: ignore
        elif logging_integration == "argilla":
            for callback in _in_memory_loggers:
                if isinstance(callback, ArgillaLogger):
                    return callback  # type: ignore

            _argilla_logger = ArgillaLogger()
            _in_memory_loggers.append(_argilla_logger)
            return _argilla_logger  # type: ignore
        elif logging_integration == "literalai":
            for callback in _in_memory_loggers:
                if isinstance(callback, LiteralAILogger):
                    return callback  # type: ignore

            _literalai_logger = LiteralAILogger()
            _in_memory_loggers.append(_literalai_logger)
            return _literalai_logger  # type: ignore
        elif logging_integration == "prometheus":
            for callback in _in_memory_loggers:
                if isinstance(callback, PrometheusLogger):
                    return callback  # type: ignore

            _prometheus_logger = PrometheusLogger()
            _in_memory_loggers.append(_prometheus_logger)
            return _prometheus_logger  # type: ignore
        elif logging_integration == "datadog":
            for callback in _in_memory_loggers:
                if isinstance(callback, DataDogLogger):
                    return callback  # type: ignore

            _datadog_logger = DataDogLogger()
            _in_memory_loggers.append(_datadog_logger)
            return _datadog_logger  # type: ignore
        elif logging_integration == "datadog_llm_observability":
            _datadog_llm_obs_logger = DataDogLLMObsLogger()
            _in_memory_loggers.append(_datadog_llm_obs_logger)
            return _datadog_llm_obs_logger  # type: ignore
        elif logging_integration == "gcs_bucket":
            for callback in _in_memory_loggers:
                if isinstance(callback, GCSBucketLogger):
                    return callback  # type: ignore

            _gcs_bucket_logger = GCSBucketLogger()
            _in_memory_loggers.append(_gcs_bucket_logger)
            return _gcs_bucket_logger  # type: ignore
        elif logging_integration == "azure_storage":
            for callback in _in_memory_loggers:
                if isinstance(callback, AzureBlobStorageLogger):
                    return callback  # type: ignore

            _azure_storage_logger = AzureBlobStorageLogger()
            _in_memory_loggers.append(_azure_storage_logger)
            return _azure_storage_logger  # type: ignore
        elif logging_integration == "opik":
            for callback in _in_memory_loggers:
                if isinstance(callback, OpikLogger):
                    return callback  # type: ignore

            _opik_logger = OpikLogger()
            _in_memory_loggers.append(_opik_logger)
            return _opik_logger  # type: ignore
        elif logging_integration == "arize":
            from litellm.integrations.opentelemetry import (
                OpenTelemetry,
                OpenTelemetryConfig,
            )

            otel_config = ArizeLogger.get_arize_opentelemetry_config()
            if otel_config is None:
                raise ValueError(
                    "No valid endpoint found for Arize, please set 'ARIZE_ENDPOINT' to your GRPC endpoint or 'ARIZE_HTTP_ENDPOINT' to your HTTP endpoint"
                )
            os.environ["OTEL_EXPORTER_OTLP_TRACES_HEADERS"] = (
                f"space_key={os.getenv('ARIZE_SPACE_KEY')},api_key={os.getenv('ARIZE_API_KEY')}"
            )
            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, OpenTelemetry)
                    and callback.callback_name == "arize"
                ):
                    return callback  # type: ignore
            _otel_logger = OpenTelemetry(config=otel_config, callback_name="arize")
            _in_memory_loggers.append(_otel_logger)
            return _otel_logger  # type: ignore
        elif logging_integration == "otel":
            from litellm.integrations.opentelemetry import OpenTelemetry

            for callback in _in_memory_loggers:
                if isinstance(callback, OpenTelemetry):
                    return callback  # type: ignore
            otel_logger = OpenTelemetry(
                **_get_custom_logger_settings_from_proxy_server(
                    callback_name=logging_integration
                )
            )
            _in_memory_loggers.append(otel_logger)
            return otel_logger  # type: ignore

        elif logging_integration == "galileo":
            for callback in _in_memory_loggers:
                if isinstance(callback, GalileoObserve):
                    return callback  # type: ignore

            galileo_logger = GalileoObserve()
            _in_memory_loggers.append(galileo_logger)
            return galileo_logger  # type: ignore
        elif logging_integration == "logfire":
            if "LOGFIRE_TOKEN" not in os.environ:
                raise ValueError("LOGFIRE_TOKEN not found in environment variables")
            from litellm.integrations.opentelemetry import (
                OpenTelemetry,
                OpenTelemetryConfig,
            )

            otel_config = OpenTelemetryConfig(
                exporter="otlp_http",
                endpoint="https://logfire-api.pydantic.dev/v1/traces",
                headers=f"Authorization={os.getenv('LOGFIRE_TOKEN')}",
            )
            for callback in _in_memory_loggers:
                if isinstance(callback, OpenTelemetry):
                    return callback  # type: ignore
            _otel_logger = OpenTelemetry(config=otel_config)
            _in_memory_loggers.append(_otel_logger)
            return _otel_logger  # type: ignore
        elif logging_integration == "dynamic_rate_limiter":
            from litellm.proxy.hooks.dynamic_rate_limiter import (
                _PROXY_DynamicRateLimitHandler,
            )

            for callback in _in_memory_loggers:
                if isinstance(callback, _PROXY_DynamicRateLimitHandler):
                    return callback  # type: ignore

            if internal_usage_cache is None:
                raise Exception(
                    "Internal Error: Cache cannot be empty - internal_usage_cache={}".format(
                        internal_usage_cache
                    )
                )

            dynamic_rate_limiter_obj = _PROXY_DynamicRateLimitHandler(
                internal_usage_cache=internal_usage_cache
            )

            if llm_router is not None and isinstance(llm_router, litellm.Router):
                dynamic_rate_limiter_obj.update_variables(llm_router=llm_router)
            _in_memory_loggers.append(dynamic_rate_limiter_obj)
            return dynamic_rate_limiter_obj  # type: ignore
        elif logging_integration == "langtrace":
            if "LANGTRACE_API_KEY" not in os.environ:
                raise ValueError("LANGTRACE_API_KEY not found in environment variables")

            from litellm.integrations.opentelemetry import (
                OpenTelemetry,
                OpenTelemetryConfig,
            )

            otel_config = OpenTelemetryConfig(
                exporter="otlp_http",
                endpoint="https://langtrace.ai/api/trace",
            )
            os.environ["OTEL_EXPORTER_OTLP_TRACES_HEADERS"] = (
                f"api_key={os.getenv('LANGTRACE_API_KEY')}"
            )
            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, OpenTelemetry)
                    and callback.callback_name == "langtrace"
                ):
                    return callback  # type: ignore
            _otel_logger = OpenTelemetry(config=otel_config, callback_name="langtrace")
            _in_memory_loggers.append(_otel_logger)
            return _otel_logger  # type: ignore

        elif logging_integration == "mlflow":
            for callback in _in_memory_loggers:
                if isinstance(callback, MlflowLogger):
                    return callback  # type: ignore

            _mlflow_logger = MlflowLogger()
            _in_memory_loggers.append(_mlflow_logger)
            return _mlflow_logger  # type: ignore
        elif logging_integration == "langfuse":
            for callback in _in_memory_loggers:
                if isinstance(callback, LangfusePromptManagement):
                    return callback

            langfuse_logger = LangfusePromptManagement()
            _in_memory_loggers.append(langfuse_logger)
            return langfuse_logger  # type: ignore
        elif logging_integration == "pagerduty":
            for callback in _in_memory_loggers:
                if isinstance(callback, PagerDutyAlerting):
                    return callback
            pagerduty_logger = PagerDutyAlerting(**custom_logger_init_args)
            _in_memory_loggers.append(pagerduty_logger)
            return pagerduty_logger  # type: ignore
        elif logging_integration == "gcs_pubsub":
            for callback in _in_memory_loggers:
                if isinstance(callback, GcsPubSubLogger):
                    return callback
            _gcs_pubsub_logger = GcsPubSubLogger()
            _in_memory_loggers.append(_gcs_pubsub_logger)
            return _gcs_pubsub_logger  # type: ignore
        elif logging_integration == "humanloop":
            for callback in _in_memory_loggers:
                if isinstance(callback, HumanloopLogger):
                    return callback

            humanloop_logger = HumanloopLogger()
            _in_memory_loggers.append(humanloop_logger)
            return humanloop_logger  # type: ignore
    except Exception as e:
        verbose_logger.exception(
            f"[Non-Blocking Error] Error initializing custom logger: {e}"
        )
        return None


def get_custom_logger_compatible_class(  # noqa: PLR0915
    logging_integration: _custom_logger_compatible_callbacks_literal,
) -> Optional[CustomLogger]:
    try:
        if logging_integration == "lago":
            for callback in _in_memory_loggers:
                if isinstance(callback, LagoLogger):
                    return callback
        elif logging_integration == "openmeter":
            for callback in _in_memory_loggers:
                if isinstance(callback, OpenMeterLogger):
                    return callback
        elif logging_integration == "braintrust":
            for callback in _in_memory_loggers:
                if isinstance(callback, BraintrustLogger):
                    return callback
        elif logging_integration == "galileo":
            for callback in _in_memory_loggers:
                if isinstance(callback, GalileoObserve):
                    return callback
        elif logging_integration == "langsmith":
            for callback in _in_memory_loggers:
                if isinstance(callback, LangsmithLogger):
                    return callback
        elif logging_integration == "argilla":
            for callback in _in_memory_loggers:
                if isinstance(callback, ArgillaLogger):
                    return callback
        elif logging_integration == "literalai":
            for callback in _in_memory_loggers:
                if isinstance(callback, LiteralAILogger):
                    return callback
        elif logging_integration == "prometheus":
            for callback in _in_memory_loggers:
                if isinstance(callback, PrometheusLogger):
                    return callback
        elif logging_integration == "datadog":
            for callback in _in_memory_loggers:
                if isinstance(callback, DataDogLogger):
                    return callback
        elif logging_integration == "datadog_llm_observability":
            for callback in _in_memory_loggers:
                if isinstance(callback, DataDogLLMObsLogger):
                    return callback
        elif logging_integration == "gcs_bucket":
            for callback in _in_memory_loggers:
                if isinstance(callback, GCSBucketLogger):
                    return callback
        elif logging_integration == "azure_storage":
            for callback in _in_memory_loggers:
                if isinstance(callback, AzureBlobStorageLogger):
                    return callback
        elif logging_integration == "opik":
            for callback in _in_memory_loggers:
                if isinstance(callback, OpikLogger):
                    return callback
        elif logging_integration == "langfuse":
            for callback in _in_memory_loggers:
                if isinstance(callback, LangfusePromptManagement):
                    return callback
        elif logging_integration == "otel":
            from litellm.integrations.opentelemetry import OpenTelemetry

            for callback in _in_memory_loggers:
                if isinstance(callback, OpenTelemetry):
                    return callback
        elif logging_integration == "arize":
            from litellm.integrations.opentelemetry import OpenTelemetry

            if "ARIZE_SPACE_KEY" not in os.environ:
                raise ValueError("ARIZE_SPACE_KEY not found in environment variables")
            if "ARIZE_API_KEY" not in os.environ:
                raise ValueError("ARIZE_API_KEY not found in environment variables")
            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, OpenTelemetry)
                    and callback.callback_name == "arize"
                ):
                    return callback
        elif logging_integration == "logfire":
            if "LOGFIRE_TOKEN" not in os.environ:
                raise ValueError("LOGFIRE_TOKEN not found in environment variables")
            from litellm.integrations.opentelemetry import OpenTelemetry

            for callback in _in_memory_loggers:
                if isinstance(callback, OpenTelemetry):
                    return callback  # type: ignore

        elif logging_integration == "dynamic_rate_limiter":
            from litellm.proxy.hooks.dynamic_rate_limiter import (
                _PROXY_DynamicRateLimitHandler,
            )

            for callback in _in_memory_loggers:
                if isinstance(callback, _PROXY_DynamicRateLimitHandler):
                    return callback  # type: ignore

        elif logging_integration == "langtrace":
            from litellm.integrations.opentelemetry import OpenTelemetry

            if "LANGTRACE_API_KEY" not in os.environ:
                raise ValueError("LANGTRACE_API_KEY not found in environment variables")

            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, OpenTelemetry)
                    and callback.callback_name == "langtrace"
                ):
                    return callback

        elif logging_integration == "mlflow":
            for callback in _in_memory_loggers:
                if isinstance(callback, MlflowLogger):
                    return callback
        elif logging_integration == "pagerduty":
            for callback in _in_memory_loggers:
                if isinstance(callback, PagerDutyAlerting):
                    return callback
        elif logging_integration == "gcs_pubsub":
            for callback in _in_memory_loggers:
                if isinstance(callback, GcsPubSubLogger):
                    return callback

        return None
    except Exception as e:
        verbose_logger.exception(
            f"[Non-Blocking Error] Error getting custom logger: {e}"
        )
        return None


def _get_custom_logger_settings_from_proxy_server(callback_name: str) -> Dict:
    """
    Get the settings for a custom logger from the proxy server config.yaml

    Proxy server config.yaml defines callback_settings as:

    callback_settings:
        otel:
            message_logging: False
    """
    from litellm.proxy.proxy_server import callback_settings

    if callback_settings:
        return dict(callback_settings.get(callback_name, {}))
    return {}


def use_custom_pricing_for_model(litellm_params: Optional[dict]) -> bool:
    """
    Check if the model uses custom pricing

    Returns True if any of `SPECIAL_MODEL_INFO_PARAMS` are present in `litellm_params` or `model_info`
    """
    if litellm_params is None:
        return False

    metadata: dict = litellm_params.get("metadata", {}) or {}
    model_info: dict = metadata.get("model_info", {}) or {}

    for _custom_cost_param in SPECIAL_MODEL_INFO_PARAMS:
        if litellm_params.get(_custom_cost_param, None) is not None:
            return True
        elif model_info.get(_custom_cost_param, None) is not None:
            return True

    return False


def is_valid_sha256_hash(value: str) -> bool:
    # Check if the value is a valid SHA-256 hash (64 hexadecimal characters)
    return bool(re.fullmatch(r"[a-fA-F0-9]{64}", value))


class StandardLoggingPayloadSetup:
    @staticmethod
    def cleanup_timestamps(
        start_time: Union[dt_object, float],
        end_time: Union[dt_object, float],
        completion_start_time: Union[dt_object, float],
    ) -> Tuple[float, float, float]:
        """
        Convert datetime objects to floats

        Args:
            start_time: Union[dt_object, float]
            end_time: Union[dt_object, float]
            completion_start_time: Union[dt_object, float]

        Returns:
            Tuple[float, float, float]: A tuple containing the start time, end time, and completion start time as floats.
        """

        if isinstance(start_time, datetime.datetime):
            start_time_float = start_time.timestamp()
        elif isinstance(start_time, float):
            start_time_float = start_time
        else:
            raise ValueError(
                f"start_time is required, got={start_time} of type {type(start_time)}"
            )

        if isinstance(end_time, datetime.datetime):
            end_time_float = end_time.timestamp()
        elif isinstance(end_time, float):
            end_time_float = end_time
        else:
            raise ValueError(
                f"end_time is required, got={end_time} of type {type(end_time)}"
            )

        if isinstance(completion_start_time, datetime.datetime):
            completion_start_time_float = completion_start_time.timestamp()
        elif isinstance(completion_start_time, float):
            completion_start_time_float = completion_start_time
        else:
            completion_start_time_float = end_time_float

        return start_time_float, end_time_float, completion_start_time_float

    @staticmethod
    def get_standard_logging_metadata(
        metadata: Optional[Dict[str, Any]],
        litellm_params: Optional[dict] = None,
        prompt_integration: Optional[str] = None,
    ) -> StandardLoggingMetadata:
        """
        Clean and filter the metadata dictionary to include only the specified keys in StandardLoggingMetadata.

        Args:
            metadata (Optional[Dict[str, Any]]): The original metadata dictionary.

        Returns:
            StandardLoggingMetadata: A StandardLoggingMetadata object containing the cleaned metadata.

        Note:
            - If the input metadata is None or not a dictionary, an empty StandardLoggingMetadata object is returned.
            - If 'user_api_key' is present in metadata and is a valid SHA256 hash, it's stored as 'user_api_key_hash'.
        """
        prompt_management_metadata: Optional[
            StandardLoggingPromptManagementMetadata
        ] = None
        if litellm_params is not None:
            prompt_id = cast(Optional[str], litellm_params.get("prompt_id", None))
            prompt_variables = cast(
                Optional[dict], litellm_params.get("prompt_variables", None)
            )

            if prompt_id is not None and prompt_integration is not None:
                prompt_management_metadata = StandardLoggingPromptManagementMetadata(
                    prompt_id=prompt_id,
                    prompt_variables=prompt_variables,
                    prompt_integration=prompt_integration,
                )

        # Initialize with default values
        clean_metadata = StandardLoggingMetadata(
            user_api_key_hash=None,
            user_api_key_alias=None,
            user_api_key_team_id=None,
            user_api_key_org_id=None,
            user_api_key_user_id=None,
            user_api_key_team_alias=None,
            spend_logs_metadata=None,
            requester_ip_address=None,
            requester_metadata=None,
            user_api_key_end_user_id=None,
            prompt_management_metadata=prompt_management_metadata,
        )
        if isinstance(metadata, dict):
            # Filter the metadata dictionary to include only the specified keys
            supported_keys = StandardLoggingMetadata.__annotations__.keys()
            for key in supported_keys:
                if key in metadata:
                    clean_metadata[key] = metadata[key]  # type: ignore

            if metadata.get("user_api_key") is not None:
                if is_valid_sha256_hash(str(metadata.get("user_api_key"))):
                    clean_metadata["user_api_key_hash"] = metadata.get(
                        "user_api_key"
                    )  # this is the hash
            _potential_requester_metadata = metadata.get(
                "metadata", None
            )  # check if user passed metadata in the sdk request - e.g. metadata for langsmith logging - https://docs.litellm.ai/docs/observability/langsmith_integration#set-langsmith-fields
            if (
                clean_metadata["requester_metadata"] is None
                and _potential_requester_metadata is not None
                and isinstance(_potential_requester_metadata, dict)
            ):
                clean_metadata["requester_metadata"] = _potential_requester_metadata
        return clean_metadata

    @staticmethod
    def get_usage_from_response_obj(response_obj: Optional[dict]) -> Usage:
        ## BASE CASE ##
        if response_obj is None:
            return Usage(
                prompt_tokens=0,
                completion_tokens=0,
                total_tokens=0,
            )

        usage = response_obj.get("usage", None) or {}
        if usage is None or (
            not isinstance(usage, dict) and not isinstance(usage, Usage)
        ):
            return Usage(
                prompt_tokens=0,
                completion_tokens=0,
                total_tokens=0,
            )
        elif isinstance(usage, Usage):
            return usage
        elif isinstance(usage, dict):
            return Usage(**usage)

        raise ValueError(f"usage is required, got={usage} of type {type(usage)}")

    @staticmethod
    def get_model_cost_information(
        base_model: Optional[str],
        custom_pricing: Optional[bool],
        custom_llm_provider: Optional[str],
        init_response_obj: Union[Any, BaseModel, dict],
    ) -> StandardLoggingModelInformation:

        model_cost_name = _select_model_name_for_cost_calc(
            model=None,
            completion_response=init_response_obj,  # type: ignore
            base_model=base_model,
            custom_pricing=custom_pricing,
        )
        if model_cost_name is None:
            model_cost_information = StandardLoggingModelInformation(
                model_map_key="", model_map_value=None
            )
        else:
            try:
                _model_cost_information = litellm.get_model_info(
                    model=model_cost_name, custom_llm_provider=custom_llm_provider
                )
                model_cost_information = StandardLoggingModelInformation(
                    model_map_key=model_cost_name,
                    model_map_value=_model_cost_information,
                )
            except Exception:
                verbose_logger.debug(  # keep in debug otherwise it will trigger on every call
                    "Model={} is not mapped in model cost map. Defaulting to None model_cost_information for standard_logging_payload".format(
                        model_cost_name
                    )
                )
                model_cost_information = StandardLoggingModelInformation(
                    model_map_key=model_cost_name, model_map_value=None
                )
        return model_cost_information

    @staticmethod
    def get_final_response_obj(
        response_obj: dict, init_response_obj: Union[Any, BaseModel, dict], kwargs: dict
    ) -> Optional[Union[dict, str, list]]:
        """
        Get final response object after redacting the message input/output from logging
        """
        if response_obj is not None:
            final_response_obj: Optional[Union[dict, str, list]] = response_obj
        elif isinstance(init_response_obj, list) or isinstance(init_response_obj, str):
            final_response_obj = init_response_obj
        else:
            final_response_obj = None

        modified_final_response_obj = redact_message_input_output_from_logging(
            model_call_details=kwargs,
            result=final_response_obj,
        )

        if modified_final_response_obj is not None and isinstance(
            modified_final_response_obj, BaseModel
        ):
            final_response_obj = modified_final_response_obj.model_dump()
        else:
            final_response_obj = modified_final_response_obj

        return final_response_obj

    @staticmethod
    def get_additional_headers(
        additiona_headers: Optional[dict],
    ) -> Optional[StandardLoggingAdditionalHeaders]:

        if additiona_headers is None:
            return None

        additional_logging_headers: StandardLoggingAdditionalHeaders = {}

        for key in StandardLoggingAdditionalHeaders.__annotations__.keys():
            _key = key.lower()
            _key = _key.replace("_", "-")
            if _key in additiona_headers:
                try:
                    additional_logging_headers[key] = int(additiona_headers[_key])  # type: ignore
                except (ValueError, TypeError):
                    verbose_logger.debug(
                        f"Could not convert {additiona_headers[_key]} to int for key {key}."
                    )
        return additional_logging_headers

    @staticmethod
    def get_hidden_params(
        hidden_params: Optional[dict],
    ) -> StandardLoggingHiddenParams:
        clean_hidden_params = StandardLoggingHiddenParams(
            model_id=None,
            cache_key=None,
            api_base=None,
            response_cost=None,
            additional_headers=None,
            litellm_overhead_time_ms=None,
        )
        if hidden_params is not None:
            for key in StandardLoggingHiddenParams.__annotations__.keys():
                if key in hidden_params:
                    if key == "additional_headers":
                        clean_hidden_params["additional_headers"] = (
                            StandardLoggingPayloadSetup.get_additional_headers(
                                hidden_params[key]
                            )
                        )
                    else:
                        clean_hidden_params[key] = hidden_params[key]  # type: ignore
        return clean_hidden_params

    @staticmethod
    def strip_trailing_slash(api_base: Optional[str]) -> Optional[str]:
        if api_base:
            return api_base.rstrip("/")
        return api_base

    @staticmethod
    def get_error_information(
        original_exception: Optional[Exception],
    ) -> StandardLoggingPayloadErrorInformation:
        error_status: str = str(getattr(original_exception, "status_code", ""))
        error_class: str = (
            str(original_exception.__class__.__name__) if original_exception else ""
        )
        _llm_provider_in_exception = getattr(original_exception, "llm_provider", "")
        return StandardLoggingPayloadErrorInformation(
            error_code=error_status,
            error_class=error_class,
            llm_provider=_llm_provider_in_exception,
        )

    @staticmethod
    def get_response_time(
        start_time_float: float,
        end_time_float: float,
        completion_start_time_float: float,
        stream: bool,
    ) -> float:
        """
        Get the response time for the LLM response

        Args:
            start_time_float: float - start time of the LLM call
            end_time_float: float - end time of the LLM call
            completion_start_time_float: float - time to first token of the LLM response (for streaming responses)
            stream: bool - True when a stream response is returned

        Returns:
            float: The response time for the LLM response
        """
        if stream is True:
            return completion_start_time_float - start_time_float
        else:
            return end_time_float - start_time_float


def get_standard_logging_object_payload(
    kwargs: Optional[dict],
    init_response_obj: Union[Any, BaseModel, dict],
    start_time: dt_object,
    end_time: dt_object,
    logging_obj: Logging,
    status: StandardLoggingPayloadStatus,
    error_str: Optional[str] = None,
    original_exception: Optional[Exception] = None,
) -> Optional[StandardLoggingPayload]:
    try:
        kwargs = kwargs or {}

        hidden_params: Optional[dict] = None
        if init_response_obj is None:
            response_obj = {}
        elif isinstance(init_response_obj, BaseModel):
            response_obj = init_response_obj.model_dump()
            hidden_params = getattr(init_response_obj, "_hidden_params", None)
        elif isinstance(init_response_obj, dict):
            response_obj = init_response_obj
        else:
            response_obj = {}

        if original_exception is not None and hidden_params is None:
            response_headers = _get_response_headers(original_exception)
            if response_headers is not None:
                hidden_params = dict(
                    StandardLoggingHiddenParams(
                        additional_headers=StandardLoggingPayloadSetup.get_additional_headers(
                            dict(response_headers)
                        ),
                        model_id=None,
                        cache_key=None,
                        api_base=None,
                        response_cost=None,
                        litellm_overhead_time_ms=None,
                    )
                )

        # standardize this function to be used across, s3, dynamoDB, langfuse logging
        litellm_params = kwargs.get("litellm_params", {})
        proxy_server_request = litellm_params.get("proxy_server_request") or {}

        metadata: dict = (
            litellm_params.get("litellm_metadata")
            or litellm_params.get("metadata", None)
            or {}
        )
        completion_start_time = kwargs.get("completion_start_time", end_time)
        call_type = kwargs.get("call_type")
        cache_hit = kwargs.get("cache_hit", False)
        usage = StandardLoggingPayloadSetup.get_usage_from_response_obj(
            response_obj=response_obj
        )
        id = response_obj.get("id", kwargs.get("litellm_call_id"))

        _model_id = metadata.get("model_info", {}).get("id", "")
        _model_group = metadata.get("model_group", "")

        request_tags = (
            metadata.get("tags", [])
            if isinstance(metadata.get("tags", []), list)
            else []
        )

        # cleanup timestamps
        start_time_float, end_time_float, completion_start_time_float = (
            StandardLoggingPayloadSetup.cleanup_timestamps(
                start_time=start_time,
                end_time=end_time,
                completion_start_time=completion_start_time,
            )
        )
        response_time = StandardLoggingPayloadSetup.get_response_time(
            start_time_float=start_time_float,
            end_time_float=end_time_float,
            completion_start_time_float=completion_start_time_float,
            stream=kwargs.get("stream", False),
        )
        # clean up litellm hidden params
        clean_hidden_params = StandardLoggingPayloadSetup.get_hidden_params(
            hidden_params
        )
        # clean up litellm metadata
        clean_metadata = StandardLoggingPayloadSetup.get_standard_logging_metadata(
            metadata=metadata,
            litellm_params=litellm_params,
            prompt_integration=kwargs.get("prompt_integration", None),
        )

        _request_body = proxy_server_request.get("body", {})
        end_user_id = clean_metadata["user_api_key_end_user_id"] or _request_body.get(
            "user", None
        )  # maintain backwards compatibility with old request body check

        saved_cache_cost: float = 0.0
        if cache_hit is True:

            id = f"{id}_cache_hit{time.time()}"  # do not duplicate the request id
            saved_cache_cost = (
                logging_obj._response_cost_calculator(
                    result=init_response_obj, cache_hit=False  # type: ignore
                )
                or 0.0
            )

        ## Get model cost information ##
        base_model = _get_base_model_from_metadata(model_call_details=kwargs)
        custom_pricing = use_custom_pricing_for_model(litellm_params=litellm_params)

        model_cost_information = StandardLoggingPayloadSetup.get_model_cost_information(
            base_model=base_model,
            custom_pricing=custom_pricing,
            custom_llm_provider=kwargs.get("custom_llm_provider"),
            init_response_obj=init_response_obj,
        )
        response_cost: float = kwargs.get("response_cost", 0) or 0.0

        error_information = StandardLoggingPayloadSetup.get_error_information(
            original_exception=original_exception,
        )

        ## get final response object ##
        final_response_obj = StandardLoggingPayloadSetup.get_final_response_obj(
            response_obj=response_obj,
            init_response_obj=init_response_obj,
            kwargs=kwargs,
        )

        stream: Optional[bool] = None
        if (
            kwargs.get("complete_streaming_response") is not None
            or kwargs.get("async_complete_streaming_response") is not None
        ):
            stream = True

        payload: StandardLoggingPayload = StandardLoggingPayload(
            id=str(id),
            trace_id=kwargs.get("litellm_trace_id"),  # type: ignore
            call_type=call_type or "",
            cache_hit=cache_hit,
            stream=stream,
            status=status,
            custom_llm_provider=cast(Optional[str], kwargs.get("custom_llm_provider")),
            saved_cache_cost=saved_cache_cost,
            startTime=start_time_float,
            endTime=end_time_float,
            completionStartTime=completion_start_time_float,
            response_time=response_time,
            model=kwargs.get("model", "") or "",
            metadata=clean_metadata,
            cache_key=clean_hidden_params["cache_key"],
            response_cost=response_cost,
            total_tokens=usage.total_tokens,
            prompt_tokens=usage.prompt_tokens,
            completion_tokens=usage.completion_tokens,
            request_tags=request_tags,
            end_user=end_user_id or "",
            api_base=StandardLoggingPayloadSetup.strip_trailing_slash(
                litellm_params.get("api_base", "")
            )
            or "",
            model_group=_model_group,
            model_id=_model_id,
            requester_ip_address=clean_metadata.get("requester_ip_address", None),
            messages=kwargs.get("messages"),
            response=final_response_obj,
            model_parameters=kwargs.get("optional_params", None),
            hidden_params=clean_hidden_params,
            model_map_information=model_cost_information,
            error_str=error_str,
            error_information=error_information,
            response_cost_failure_debug_info=kwargs.get(
                "response_cost_failure_debug_information"
            ),
            guardrail_information=metadata.get(
                "standard_logging_guardrail_information", None
            ),
        )

        emit_standard_logging_payload(payload)
        return payload
    except Exception as e:
        verbose_logger.exception(
            "Error creating standard logging object - {}".format(str(e))
        )
        return None


def emit_standard_logging_payload(payload: StandardLoggingPayload):
    if os.getenv("LITELLM_PRINT_STANDARD_LOGGING_PAYLOAD"):
        verbose_logger.info(json.dumps(payload, indent=4))


def get_standard_logging_metadata(
    metadata: Optional[Dict[str, Any]]
) -> StandardLoggingMetadata:
    """
    Clean and filter the metadata dictionary to include only the specified keys in StandardLoggingMetadata.

    Args:
        metadata (Optional[Dict[str, Any]]): The original metadata dictionary.

    Returns:
        StandardLoggingMetadata: A StandardLoggingMetadata object containing the cleaned metadata.

    Note:
        - If the input metadata is None or not a dictionary, an empty StandardLoggingMetadata object is returned.
        - If 'user_api_key' is present in metadata and is a valid SHA256 hash, it's stored as 'user_api_key_hash'.
    """
    # Initialize with default values
    clean_metadata = StandardLoggingMetadata(
        user_api_key_hash=None,
        user_api_key_alias=None,
        user_api_key_team_id=None,
        user_api_key_org_id=None,
        user_api_key_user_id=None,
        user_api_key_team_alias=None,
        spend_logs_metadata=None,
        requester_ip_address=None,
        requester_metadata=None,
        user_api_key_end_user_id=None,
        prompt_management_metadata=None,
    )
    if isinstance(metadata, dict):
        # Filter the metadata dictionary to include only the specified keys
        clean_metadata = StandardLoggingMetadata(
            **{  # type: ignore
                key: metadata[key]
                for key in StandardLoggingMetadata.__annotations__.keys()
                if key in metadata
            }
        )

        if metadata.get("user_api_key") is not None:
            if is_valid_sha256_hash(str(metadata.get("user_api_key"))):
                clean_metadata["user_api_key_hash"] = metadata.get(
                    "user_api_key"
                )  # this is the hash
    return clean_metadata


def scrub_sensitive_keys_in_metadata(litellm_params: Optional[dict]):
    if litellm_params is None:
        litellm_params = {}

    metadata = litellm_params.get("metadata", {}) or {}

    ## check user_api_key_metadata for sensitive logging keys
    cleaned_user_api_key_metadata = {}
    if "user_api_key_metadata" in metadata and isinstance(
        metadata["user_api_key_metadata"], dict
    ):
        for k, v in metadata["user_api_key_metadata"].items():
            if k == "logging":  # prevent logging user logging keys
                cleaned_user_api_key_metadata[k] = (
                    "scrubbed_by_litellm_for_sensitive_keys"
                )
            else:
                cleaned_user_api_key_metadata[k] = v

        metadata["user_api_key_metadata"] = cleaned_user_api_key_metadata
        litellm_params["metadata"] = metadata

    return litellm_params


# integration helper function
def modify_integration(integration_name, integration_params):
    global supabaseClient
    if integration_name == "supabase":
        if "table_name" in integration_params:
            Supabase.supabase_table_name = integration_params["table_name"]


@lru_cache(maxsize=16)
def _get_traceback_str_for_error(error_str: str) -> str:
    """
    function wrapped with lru_cache to limit the number of times `traceback.format_exc()` is called
    """
    return traceback.format_exc()


from decimal import Decimal

# used for unit testing
from typing import Any, Dict, List, Optional, Union


def create_dummy_standard_logging_payload() -> StandardLoggingPayload:
    # First create the nested objects with proper typing
    model_info = StandardLoggingModelInformation(
        model_map_key="gpt-3.5-turbo", model_map_value=None
    )

    metadata = StandardLoggingMetadata(  # type: ignore
        user_api_key_hash=str("test_hash"),
        user_api_key_alias=str("test_alias"),
        user_api_key_team_id=str("test_team"),
        user_api_key_user_id=str("test_user"),
        user_api_key_team_alias=str("test_team_alias"),
        user_api_key_org_id=None,
        spend_logs_metadata=None,
        requester_ip_address=str("127.0.0.1"),
        requester_metadata=None,
        user_api_key_end_user_id=str("test_end_user"),
    )

    hidden_params = StandardLoggingHiddenParams(
        model_id=None,
        cache_key=None,
        api_base=None,
        response_cost=None,
        additional_headers=None,
        litellm_overhead_time_ms=None,
    )

    # Convert numeric values to appropriate types
    response_cost = Decimal("0.1")
    start_time = Decimal("1234567890.0")
    end_time = Decimal("1234567891.0")
    completion_start_time = Decimal("1234567890.5")
    saved_cache_cost = Decimal("0.0")

    # Create messages and response with proper typing
    messages: List[Dict[str, str]] = [{"role": "user", "content": "Hello, world!"}]
    response: Dict[str, List[Dict[str, Dict[str, str]]]] = {
        "choices": [{"message": {"content": "Hi there!"}}]
    }

    # Main payload initialization
    return StandardLoggingPayload(  # type: ignore
        id=str("test_id"),
        call_type=str("completion"),
        stream=bool(False),
        response_cost=response_cost,
        response_cost_failure_debug_info=None,
        status=str("success"),
        total_tokens=int(30),
        prompt_tokens=int(20),
        completion_tokens=int(10),
        startTime=start_time,
        endTime=end_time,
        completionStartTime=completion_start_time,
        model_map_information=model_info,
        model=str("gpt-3.5-turbo"),
        model_id=str("model-123"),
        model_group=str("openai-gpt"),
        custom_llm_provider=str("openai"),
        api_base=str("https://api.openai.com"),
        metadata=metadata,
        cache_hit=bool(False),
        cache_key=None,
        saved_cache_cost=saved_cache_cost,
        request_tags=[],
        end_user=None,
        requester_ip_address=str("127.0.0.1"),
        messages=messages,
        response=response,
        error_str=None,
        model_parameters={"stream": True},
        hidden_params=hidden_params,
    )