File size: 67,982 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
# used for /metrics endpoint on LiteLLM Proxy
#### What this does ####
#    On success, log events to Prometheus
import asyncio
import sys
from datetime import datetime, timedelta
from typing import Any, Awaitable, Callable, List, Literal, Optional, Tuple, cast

import litellm
from litellm._logging import print_verbose, verbose_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.proxy._types import LiteLLM_TeamTable, UserAPIKeyAuth
from litellm.types.integrations.prometheus import *
from litellm.types.utils import StandardLoggingPayload
from litellm.utils import get_end_user_id_for_cost_tracking


class PrometheusLogger(CustomLogger):
    # Class variables or attributes
    def __init__(
        self,
        **kwargs,
    ):
        try:
            from prometheus_client import Counter, Gauge, Histogram

            from litellm.proxy.proxy_server import CommonProxyErrors, premium_user

            if premium_user is not True:
                verbose_logger.warning(
                    f"🚨🚨🚨 Prometheus Metrics is on LiteLLM Enterprise\n🚨 {CommonProxyErrors.not_premium_user.value}"
                )
                self.litellm_not_a_premium_user_metric = Counter(
                    name="litellm_not_a_premium_user_metric",
                    documentation=f"🚨🚨🚨 Prometheus Metrics is on LiteLLM Enterprise. 🚨 {CommonProxyErrors.not_premium_user.value}",
                )
                return

            self.litellm_proxy_failed_requests_metric = Counter(
                name="litellm_proxy_failed_requests_metric",
                documentation="Total number of failed responses from proxy - the client did not get a success response from litellm proxy",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_proxy_failed_requests_metric"
                ),
            )

            self.litellm_proxy_total_requests_metric = Counter(
                name="litellm_proxy_total_requests_metric",
                documentation="Total number of requests made to the proxy server - track number of client side requests",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_proxy_total_requests_metric"
                ),
            )

            # request latency metrics
            self.litellm_request_total_latency_metric = Histogram(
                "litellm_request_total_latency_metric",
                "Total latency (seconds) for a request to LiteLLM",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_request_total_latency_metric"
                ),
                buckets=LATENCY_BUCKETS,
            )

            self.litellm_llm_api_latency_metric = Histogram(
                "litellm_llm_api_latency_metric",
                "Total latency (seconds) for a models LLM API call",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_llm_api_latency_metric"
                ),
                buckets=LATENCY_BUCKETS,
            )

            self.litellm_llm_api_time_to_first_token_metric = Histogram(
                "litellm_llm_api_time_to_first_token_metric",
                "Time to first token for a models LLM API call",
                labelnames=[
                    "model",
                    "hashed_api_key",
                    "api_key_alias",
                    "team",
                    "team_alias",
                ],
                buckets=LATENCY_BUCKETS,
            )

            # Counter for spend
            self.litellm_spend_metric = Counter(
                "litellm_spend_metric",
                "Total spend on LLM requests",
                labelnames=[
                    "end_user",
                    "hashed_api_key",
                    "api_key_alias",
                    "model",
                    "team",
                    "team_alias",
                    "user",
                ],
            )

            # Counter for total_output_tokens
            self.litellm_tokens_metric = Counter(
                "litellm_total_tokens",
                "Total number of input + output tokens from LLM requests",
                labelnames=[
                    "end_user",
                    "hashed_api_key",
                    "api_key_alias",
                    "model",
                    "team",
                    "team_alias",
                    "user",
                ],
            )

            self.litellm_input_tokens_metric = Counter(
                "litellm_input_tokens",
                "Total number of input tokens from LLM requests",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_input_tokens_metric"
                ),
            )

            self.litellm_output_tokens_metric = Counter(
                "litellm_output_tokens",
                "Total number of output tokens from LLM requests",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_output_tokens_metric"
                ),
            )

            # Remaining Budget for Team
            self.litellm_remaining_team_budget_metric = Gauge(
                "litellm_remaining_team_budget_metric",
                "Remaining budget for team",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_remaining_team_budget_metric"
                ),
            )

            # Max Budget for Team
            self.litellm_team_max_budget_metric = Gauge(
                "litellm_team_max_budget_metric",
                "Maximum budget set for team",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_team_max_budget_metric"
                ),
            )

            # Team Budget Reset At
            self.litellm_team_budget_remaining_hours_metric = Gauge(
                "litellm_team_budget_remaining_hours_metric",
                "Remaining days for team budget to be reset",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_team_budget_remaining_hours_metric"
                ),
            )

            # Remaining Budget for API Key
            self.litellm_remaining_api_key_budget_metric = Gauge(
                "litellm_remaining_api_key_budget_metric",
                "Remaining budget for api key",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_remaining_api_key_budget_metric"
                ),
            )

            # Max Budget for API Key
            self.litellm_api_key_max_budget_metric = Gauge(
                "litellm_api_key_max_budget_metric",
                "Maximum budget set for api key",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_api_key_max_budget_metric"
                ),
            )

            self.litellm_api_key_budget_remaining_hours_metric = Gauge(
                "litellm_api_key_budget_remaining_hours_metric",
                "Remaining hours for api key budget to be reset",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_api_key_budget_remaining_hours_metric"
                ),
            )

            ########################################
            # LiteLLM Virtual API KEY metrics
            ########################################
            # Remaining MODEL RPM limit for API Key
            self.litellm_remaining_api_key_requests_for_model = Gauge(
                "litellm_remaining_api_key_requests_for_model",
                "Remaining Requests API Key can make for model (model based rpm limit on key)",
                labelnames=["hashed_api_key", "api_key_alias", "model"],
            )

            # Remaining MODEL TPM limit for API Key
            self.litellm_remaining_api_key_tokens_for_model = Gauge(
                "litellm_remaining_api_key_tokens_for_model",
                "Remaining Tokens API Key can make for model (model based tpm limit on key)",
                labelnames=["hashed_api_key", "api_key_alias", "model"],
            )

            ########################################
            # LLM API Deployment Metrics / analytics
            ########################################

            # Remaining Rate Limit for model
            self.litellm_remaining_requests_metric = Gauge(
                "litellm_remaining_requests",
                "LLM Deployment Analytics - remaining requests for model, returned from LLM API Provider",
                labelnames=[
                    "model_group",
                    "api_provider",
                    "api_base",
                    "litellm_model_name",
                    "hashed_api_key",
                    "api_key_alias",
                ],
            )

            self.litellm_remaining_tokens_metric = Gauge(
                "litellm_remaining_tokens",
                "remaining tokens for model, returned from LLM API Provider",
                labelnames=[
                    "model_group",
                    "api_provider",
                    "api_base",
                    "litellm_model_name",
                    "hashed_api_key",
                    "api_key_alias",
                ],
            )

            self.litellm_overhead_latency_metric = Histogram(
                "litellm_overhead_latency_metric",
                "Latency overhead (milliseconds) added by LiteLLM processing",
                labelnames=[
                    "model_group",
                    "api_provider",
                    "api_base",
                    "litellm_model_name",
                    "hashed_api_key",
                    "api_key_alias",
                ],
                buckets=LATENCY_BUCKETS,
            )
            # llm api provider budget metrics
            self.litellm_provider_remaining_budget_metric = Gauge(
                "litellm_provider_remaining_budget_metric",
                "Remaining budget for provider - used when you set provider budget limits",
                labelnames=["api_provider"],
            )

            # Get all keys
            _logged_llm_labels = [
                UserAPIKeyLabelNames.v2_LITELLM_MODEL_NAME.value,
                UserAPIKeyLabelNames.MODEL_ID.value,
                UserAPIKeyLabelNames.API_BASE.value,
                UserAPIKeyLabelNames.API_PROVIDER.value,
            ]
            team_and_key_labels = [
                "hashed_api_key",
                "api_key_alias",
                "team",
                "team_alias",
            ]

            # Metric for deployment state
            self.litellm_deployment_state = Gauge(
                "litellm_deployment_state",
                "LLM Deployment Analytics - The state of the deployment: 0 = healthy, 1 = partial outage, 2 = complete outage",
                labelnames=_logged_llm_labels,
            )

            self.litellm_deployment_cooled_down = Counter(
                "litellm_deployment_cooled_down",
                "LLM Deployment Analytics - Number of times a deployment has been cooled down by LiteLLM load balancing logic. exception_status is the status of the exception that caused the deployment to be cooled down",
                labelnames=_logged_llm_labels + [EXCEPTION_STATUS],
            )

            self.litellm_deployment_success_responses = Counter(
                name="litellm_deployment_success_responses",
                documentation="LLM Deployment Analytics - Total number of successful LLM API calls via litellm",
                labelnames=[REQUESTED_MODEL] + _logged_llm_labels + team_and_key_labels,
            )
            self.litellm_deployment_failure_responses = Counter(
                name="litellm_deployment_failure_responses",
                documentation="LLM Deployment Analytics - Total number of failed LLM API calls for a specific LLM deploymeny. exception_status is the status of the exception from the llm api",
                labelnames=[REQUESTED_MODEL]
                + _logged_llm_labels
                + EXCEPTION_LABELS
                + team_and_key_labels,
            )
            self.litellm_deployment_failure_by_tag_responses = Counter(
                "litellm_deployment_failure_by_tag_responses",
                "Total number of failed LLM API calls for a specific LLM deploymeny by custom metadata tags",
                labelnames=[
                    UserAPIKeyLabelNames.REQUESTED_MODEL.value,
                    UserAPIKeyLabelNames.TAG.value,
                ]
                + _logged_llm_labels
                + EXCEPTION_LABELS,
            )
            self.litellm_deployment_total_requests = Counter(
                name="litellm_deployment_total_requests",
                documentation="LLM Deployment Analytics - Total number of LLM API calls via litellm - success + failure",
                labelnames=[REQUESTED_MODEL] + _logged_llm_labels + team_and_key_labels,
            )

            # Deployment Latency tracking
            team_and_key_labels = [
                "hashed_api_key",
                "api_key_alias",
                "team",
                "team_alias",
            ]
            self.litellm_deployment_latency_per_output_token = Histogram(
                name="litellm_deployment_latency_per_output_token",
                documentation="LLM Deployment Analytics - Latency per output token",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_deployment_latency_per_output_token"
                ),
            )

            self.litellm_deployment_successful_fallbacks = Counter(
                "litellm_deployment_successful_fallbacks",
                "LLM Deployment Analytics - Number of successful fallback requests from primary model -> fallback model",
                PrometheusMetricLabels.get_labels(
                    "litellm_deployment_successful_fallbacks"
                ),
            )

            self.litellm_deployment_failed_fallbacks = Counter(
                "litellm_deployment_failed_fallbacks",
                "LLM Deployment Analytics - Number of failed fallback requests from primary model -> fallback model",
                PrometheusMetricLabels.get_labels(
                    "litellm_deployment_failed_fallbacks"
                ),
            )

            self.litellm_llm_api_failed_requests_metric = Counter(
                name="litellm_llm_api_failed_requests_metric",
                documentation="deprecated - use litellm_proxy_failed_requests_metric",
                labelnames=[
                    "end_user",
                    "hashed_api_key",
                    "api_key_alias",
                    "model",
                    "team",
                    "team_alias",
                    "user",
                ],
            )

            self.litellm_requests_metric = Counter(
                name="litellm_requests_metric",
                documentation="deprecated - use litellm_proxy_total_requests_metric. Total number of LLM calls to litellm - track total per API Key, team, user",
                labelnames=PrometheusMetricLabels.get_labels(
                    label_name="litellm_requests_metric"
                ),
            )
            self._initialize_prometheus_startup_metrics()

        except Exception as e:
            print_verbose(f"Got exception on init prometheus client {str(e)}")
            raise e

    async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
        # Define prometheus client
        from litellm.types.utils import StandardLoggingPayload

        verbose_logger.debug(
            f"prometheus Logging - Enters success logging function for kwargs {kwargs}"
        )

        # unpack kwargs
        standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
            "standard_logging_object"
        )

        if standard_logging_payload is None or not isinstance(
            standard_logging_payload, dict
        ):
            raise ValueError(
                f"standard_logging_object is required, got={standard_logging_payload}"
            )

        model = kwargs.get("model", "")
        litellm_params = kwargs.get("litellm_params", {}) or {}
        _metadata = litellm_params.get("metadata", {})
        end_user_id = get_end_user_id_for_cost_tracking(
            litellm_params, service_type="prometheus"
        )
        user_id = standard_logging_payload["metadata"]["user_api_key_user_id"]
        user_api_key = standard_logging_payload["metadata"]["user_api_key_hash"]
        user_api_key_alias = standard_logging_payload["metadata"]["user_api_key_alias"]
        user_api_team = standard_logging_payload["metadata"]["user_api_key_team_id"]
        user_api_team_alias = standard_logging_payload["metadata"][
            "user_api_key_team_alias"
        ]
        output_tokens = standard_logging_payload["completion_tokens"]
        tokens_used = standard_logging_payload["total_tokens"]
        response_cost = standard_logging_payload["response_cost"]
        _requester_metadata = standard_logging_payload["metadata"].get(
            "requester_metadata"
        )
        if standard_logging_payload is not None and isinstance(
            standard_logging_payload, dict
        ):
            _tags = standard_logging_payload["request_tags"]
        else:
            _tags = []

        print_verbose(
            f"inside track_prometheus_metrics, model {model}, response_cost {response_cost}, tokens_used {tokens_used}, end_user_id {end_user_id}, user_api_key {user_api_key}"
        )

        enum_values = UserAPIKeyLabelValues(
            end_user=end_user_id,
            hashed_api_key=user_api_key,
            api_key_alias=user_api_key_alias,
            requested_model=standard_logging_payload["model_group"],
            team=user_api_team,
            team_alias=user_api_team_alias,
            user=user_id,
            status_code="200",
            model=model,
            litellm_model_name=model,
            tags=_tags,
            model_id=standard_logging_payload["model_id"],
            api_base=standard_logging_payload["api_base"],
            api_provider=standard_logging_payload["custom_llm_provider"],
            exception_status=None,
            exception_class=None,
            custom_metadata_labels=get_custom_labels_from_metadata(
                metadata=standard_logging_payload["metadata"].get("requester_metadata")
                or {}
            ),
        )

        if (
            user_api_key is not None
            and isinstance(user_api_key, str)
            and user_api_key.startswith("sk-")
        ):
            from litellm.proxy.utils import hash_token

            user_api_key = hash_token(user_api_key)

        # increment total LLM requests and spend metric
        self._increment_top_level_request_and_spend_metrics(
            end_user_id=end_user_id,
            user_api_key=user_api_key,
            user_api_key_alias=user_api_key_alias,
            model=model,
            user_api_team=user_api_team,
            user_api_team_alias=user_api_team_alias,
            user_id=user_id,
            response_cost=response_cost,
            enum_values=enum_values,
        )

        # input, output, total token metrics
        self._increment_token_metrics(
            # why type ignore below?
            # 1. We just checked if isinstance(standard_logging_payload, dict). Pyright complains.
            # 2. Pyright does not allow us to run isinstance(standard_logging_payload, StandardLoggingPayload) <- this would be ideal
            standard_logging_payload=standard_logging_payload,  # type: ignore
            end_user_id=end_user_id,
            user_api_key=user_api_key,
            user_api_key_alias=user_api_key_alias,
            model=model,
            user_api_team=user_api_team,
            user_api_team_alias=user_api_team_alias,
            user_id=user_id,
            enum_values=enum_values,
        )

        # remaining budget metrics
        await self._increment_remaining_budget_metrics(
            user_api_team=user_api_team,
            user_api_team_alias=user_api_team_alias,
            user_api_key=user_api_key,
            user_api_key_alias=user_api_key_alias,
            litellm_params=litellm_params,
            response_cost=response_cost,
        )

        # set proxy virtual key rpm/tpm metrics
        self._set_virtual_key_rate_limit_metrics(
            user_api_key=user_api_key,
            user_api_key_alias=user_api_key_alias,
            kwargs=kwargs,
            metadata=_metadata,
        )

        # set latency metrics
        self._set_latency_metrics(
            kwargs=kwargs,
            model=model,
            user_api_key=user_api_key,
            user_api_key_alias=user_api_key_alias,
            user_api_team=user_api_team,
            user_api_team_alias=user_api_team_alias,
            # why type ignore below?
            # 1. We just checked if isinstance(standard_logging_payload, dict). Pyright complains.
            # 2. Pyright does not allow us to run isinstance(standard_logging_payload, StandardLoggingPayload) <- this would be ideal
            enum_values=enum_values,
        )

        # set x-ratelimit headers
        self.set_llm_deployment_success_metrics(
            kwargs, start_time, end_time, enum_values, output_tokens
        )

        if (
            standard_logging_payload["stream"] is True
        ):  # log successful streaming requests from logging event hook.
            _labels = prometheus_label_factory(
                supported_enum_labels=PrometheusMetricLabels.get_labels(
                    label_name="litellm_proxy_total_requests_metric"
                ),
                enum_values=enum_values,
            )
            self.litellm_proxy_total_requests_metric.labels(**_labels).inc()

    def _increment_token_metrics(
        self,
        standard_logging_payload: StandardLoggingPayload,
        end_user_id: Optional[str],
        user_api_key: Optional[str],
        user_api_key_alias: Optional[str],
        model: Optional[str],
        user_api_team: Optional[str],
        user_api_team_alias: Optional[str],
        user_id: Optional[str],
        enum_values: UserAPIKeyLabelValues,
    ):
        # token metrics
        self.litellm_tokens_metric.labels(
            end_user_id,
            user_api_key,
            user_api_key_alias,
            model,
            user_api_team,
            user_api_team_alias,
            user_id,
        ).inc(standard_logging_payload["total_tokens"])

        if standard_logging_payload is not None and isinstance(
            standard_logging_payload, dict
        ):
            _tags = standard_logging_payload["request_tags"]

        _labels = prometheus_label_factory(
            supported_enum_labels=PrometheusMetricLabels.get_labels(
                label_name="litellm_input_tokens_metric"
            ),
            enum_values=enum_values,
        )
        self.litellm_input_tokens_metric.labels(**_labels).inc(
            standard_logging_payload["prompt_tokens"]
        )

        _labels = prometheus_label_factory(
            supported_enum_labels=PrometheusMetricLabels.get_labels(
                label_name="litellm_output_tokens_metric"
            ),
            enum_values=enum_values,
        )

        self.litellm_output_tokens_metric.labels(**_labels).inc(
            standard_logging_payload["completion_tokens"]
        )

    async def _increment_remaining_budget_metrics(
        self,
        user_api_team: Optional[str],
        user_api_team_alias: Optional[str],
        user_api_key: Optional[str],
        user_api_key_alias: Optional[str],
        litellm_params: dict,
        response_cost: float,
    ):
        _team_spend = litellm_params.get("metadata", {}).get(
            "user_api_key_team_spend", None
        )
        _team_max_budget = litellm_params.get("metadata", {}).get(
            "user_api_key_team_max_budget", None
        )

        _api_key_spend = litellm_params.get("metadata", {}).get(
            "user_api_key_spend", None
        )
        _api_key_max_budget = litellm_params.get("metadata", {}).get(
            "user_api_key_max_budget", None
        )
        await self._set_api_key_budget_metrics_after_api_request(
            user_api_key=user_api_key,
            user_api_key_alias=user_api_key_alias,
            response_cost=response_cost,
            key_max_budget=_api_key_max_budget,
            key_spend=_api_key_spend,
        )

        await self._set_team_budget_metrics_after_api_request(
            user_api_team=user_api_team,
            user_api_team_alias=user_api_team_alias,
            team_spend=_team_spend,
            team_max_budget=_team_max_budget,
            response_cost=response_cost,
        )

    def _increment_top_level_request_and_spend_metrics(
        self,
        end_user_id: Optional[str],
        user_api_key: Optional[str],
        user_api_key_alias: Optional[str],
        model: Optional[str],
        user_api_team: Optional[str],
        user_api_team_alias: Optional[str],
        user_id: Optional[str],
        response_cost: float,
        enum_values: UserAPIKeyLabelValues,
    ):
        _labels = prometheus_label_factory(
            supported_enum_labels=PrometheusMetricLabels.get_labels(
                label_name="litellm_requests_metric"
            ),
            enum_values=enum_values,
        )
        self.litellm_requests_metric.labels(**_labels).inc()

        self.litellm_spend_metric.labels(
            end_user_id,
            user_api_key,
            user_api_key_alias,
            model,
            user_api_team,
            user_api_team_alias,
            user_id,
        ).inc(response_cost)

    def _set_virtual_key_rate_limit_metrics(
        self,
        user_api_key: Optional[str],
        user_api_key_alias: Optional[str],
        kwargs: dict,
        metadata: dict,
    ):
        from litellm.proxy.common_utils.callback_utils import (
            get_model_group_from_litellm_kwargs,
        )

        # Set remaining rpm/tpm for API Key + model
        # see parallel_request_limiter.py - variables are set there
        model_group = get_model_group_from_litellm_kwargs(kwargs)
        remaining_requests_variable_name = (
            f"litellm-key-remaining-requests-{model_group}"
        )
        remaining_tokens_variable_name = f"litellm-key-remaining-tokens-{model_group}"

        remaining_requests = (
            metadata.get(remaining_requests_variable_name, sys.maxsize) or sys.maxsize
        )
        remaining_tokens = (
            metadata.get(remaining_tokens_variable_name, sys.maxsize) or sys.maxsize
        )

        self.litellm_remaining_api_key_requests_for_model.labels(
            user_api_key, user_api_key_alias, model_group
        ).set(remaining_requests)

        self.litellm_remaining_api_key_tokens_for_model.labels(
            user_api_key, user_api_key_alias, model_group
        ).set(remaining_tokens)

    def _set_latency_metrics(
        self,
        kwargs: dict,
        model: Optional[str],
        user_api_key: Optional[str],
        user_api_key_alias: Optional[str],
        user_api_team: Optional[str],
        user_api_team_alias: Optional[str],
        enum_values: UserAPIKeyLabelValues,
    ):
        # latency metrics
        end_time: datetime = kwargs.get("end_time") or datetime.now()
        start_time: Optional[datetime] = kwargs.get("start_time")
        api_call_start_time = kwargs.get("api_call_start_time", None)
        completion_start_time = kwargs.get("completion_start_time", None)
        if (
            completion_start_time is not None
            and isinstance(completion_start_time, datetime)
            and kwargs.get("stream", False) is True  # only emit for streaming requests
        ):
            time_to_first_token_seconds = (
                completion_start_time - api_call_start_time
            ).total_seconds()
            self.litellm_llm_api_time_to_first_token_metric.labels(
                model,
                user_api_key,
                user_api_key_alias,
                user_api_team,
                user_api_team_alias,
            ).observe(time_to_first_token_seconds)
        else:
            verbose_logger.debug(
                "Time to first token metric not emitted, stream option in model_parameters is not True"
            )
        if api_call_start_time is not None and isinstance(
            api_call_start_time, datetime
        ):
            api_call_total_time: timedelta = end_time - api_call_start_time
            api_call_total_time_seconds = api_call_total_time.total_seconds()
            _labels = prometheus_label_factory(
                supported_enum_labels=PrometheusMetricLabels.get_labels(
                    label_name="litellm_llm_api_latency_metric"
                ),
                enum_values=enum_values,
            )
            self.litellm_llm_api_latency_metric.labels(**_labels).observe(
                api_call_total_time_seconds
            )

        # total request latency
        if start_time is not None and isinstance(start_time, datetime):
            total_time: timedelta = end_time - start_time
            total_time_seconds = total_time.total_seconds()
            _labels = prometheus_label_factory(
                supported_enum_labels=PrometheusMetricLabels.get_labels(
                    label_name="litellm_request_total_latency_metric"
                ),
                enum_values=enum_values,
            )
            self.litellm_request_total_latency_metric.labels(**_labels).observe(
                total_time_seconds
            )

    async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
        from litellm.types.utils import StandardLoggingPayload

        verbose_logger.debug(
            f"prometheus Logging - Enters failure logging function for kwargs {kwargs}"
        )

        # unpack kwargs
        model = kwargs.get("model", "")
        standard_logging_payload: StandardLoggingPayload = kwargs.get(
            "standard_logging_object", {}
        )
        litellm_params = kwargs.get("litellm_params", {}) or {}
        end_user_id = get_end_user_id_for_cost_tracking(
            litellm_params, service_type="prometheus"
        )
        user_id = standard_logging_payload["metadata"]["user_api_key_user_id"]
        user_api_key = standard_logging_payload["metadata"]["user_api_key_hash"]
        user_api_key_alias = standard_logging_payload["metadata"]["user_api_key_alias"]
        user_api_team = standard_logging_payload["metadata"]["user_api_key_team_id"]
        user_api_team_alias = standard_logging_payload["metadata"][
            "user_api_key_team_alias"
        ]
        kwargs.get("exception", None)

        try:
            self.litellm_llm_api_failed_requests_metric.labels(
                end_user_id,
                user_api_key,
                user_api_key_alias,
                model,
                user_api_team,
                user_api_team_alias,
                user_id,
            ).inc()
            self.set_llm_deployment_failure_metrics(kwargs)
        except Exception as e:
            verbose_logger.exception(
                "prometheus Layer Error(): Exception occured - {}".format(str(e))
            )
            pass
        pass

    async def async_post_call_failure_hook(
        self,
        request_data: dict,
        original_exception: Exception,
        user_api_key_dict: UserAPIKeyAuth,
    ):
        """
        Track client side failures

        Proxy level tracking - failed client side requests

        labelnames=[
                    "end_user",
                    "hashed_api_key",
                    "api_key_alias",
                    REQUESTED_MODEL,
                    "team",
                    "team_alias",
                ] + EXCEPTION_LABELS,
        """
        try:
            _tags = cast(List[str], request_data.get("tags") or [])
            enum_values = UserAPIKeyLabelValues(
                end_user=user_api_key_dict.end_user_id,
                user=user_api_key_dict.user_id,
                hashed_api_key=user_api_key_dict.api_key,
                api_key_alias=user_api_key_dict.key_alias,
                team=user_api_key_dict.team_id,
                team_alias=user_api_key_dict.team_alias,
                requested_model=request_data.get("model", ""),
                status_code=str(getattr(original_exception, "status_code", None)),
                exception_status=str(getattr(original_exception, "status_code", None)),
                exception_class=str(original_exception.__class__.__name__),
                tags=_tags,
            )
            _labels = prometheus_label_factory(
                supported_enum_labels=PrometheusMetricLabels.get_labels(
                    label_name="litellm_proxy_failed_requests_metric"
                ),
                enum_values=enum_values,
            )
            self.litellm_proxy_failed_requests_metric.labels(**_labels).inc()

            _labels = prometheus_label_factory(
                supported_enum_labels=PrometheusMetricLabels.get_labels(
                    label_name="litellm_proxy_total_requests_metric"
                ),
                enum_values=enum_values,
            )
            self.litellm_proxy_total_requests_metric.labels(**_labels).inc()

        except Exception as e:
            verbose_logger.exception(
                "prometheus Layer Error(): Exception occured - {}".format(str(e))
            )
            pass

    async def async_post_call_success_hook(
        self, data: dict, user_api_key_dict: UserAPIKeyAuth, response
    ):
        """
        Proxy level tracking - triggered when the proxy responds with a success response to the client
        """
        try:
            enum_values = UserAPIKeyLabelValues(
                end_user=user_api_key_dict.end_user_id,
                hashed_api_key=user_api_key_dict.api_key,
                api_key_alias=user_api_key_dict.key_alias,
                requested_model=data.get("model", ""),
                team=user_api_key_dict.team_id,
                team_alias=user_api_key_dict.team_alias,
                user=user_api_key_dict.user_id,
                status_code="200",
            )
            _labels = prometheus_label_factory(
                supported_enum_labels=PrometheusMetricLabels.get_labels(
                    label_name="litellm_proxy_total_requests_metric"
                ),
                enum_values=enum_values,
            )
            self.litellm_proxy_total_requests_metric.labels(**_labels).inc()

        except Exception as e:
            verbose_logger.exception(
                "prometheus Layer Error(): Exception occured - {}".format(str(e))
            )
            pass

    def set_llm_deployment_failure_metrics(self, request_kwargs: dict):
        """
        Sets Failure metrics when an LLM API call fails

        - mark the deployment as partial outage
        - increment deployment failure responses metric
        - increment deployment total requests metric

        Args:
            request_kwargs: dict

        """
        try:
            verbose_logger.debug("setting remaining tokens requests metric")
            standard_logging_payload: StandardLoggingPayload = request_kwargs.get(
                "standard_logging_object", {}
            )
            _litellm_params = request_kwargs.get("litellm_params", {}) or {}
            litellm_model_name = request_kwargs.get("model", None)
            model_group = standard_logging_payload.get("model_group", None)
            api_base = standard_logging_payload.get("api_base", None)
            model_id = standard_logging_payload.get("model_id", None)
            exception: Exception = request_kwargs.get("exception", None)

            llm_provider = _litellm_params.get("custom_llm_provider", None)

            """
            log these labels
            ["litellm_model_name", "model_id", "api_base", "api_provider"]
            """
            self.set_deployment_partial_outage(
                litellm_model_name=litellm_model_name,
                model_id=model_id,
                api_base=api_base,
                api_provider=llm_provider,
            )
            self.litellm_deployment_failure_responses.labels(
                litellm_model_name=litellm_model_name,
                model_id=model_id,
                api_base=api_base,
                api_provider=llm_provider,
                exception_status=str(getattr(exception, "status_code", None)),
                exception_class=exception.__class__.__name__,
                requested_model=model_group,
                hashed_api_key=standard_logging_payload["metadata"][
                    "user_api_key_hash"
                ],
                api_key_alias=standard_logging_payload["metadata"][
                    "user_api_key_alias"
                ],
                team=standard_logging_payload["metadata"]["user_api_key_team_id"],
                team_alias=standard_logging_payload["metadata"][
                    "user_api_key_team_alias"
                ],
            ).inc()

            # tag based tracking
            if standard_logging_payload is not None and isinstance(
                standard_logging_payload, dict
            ):
                _tags = standard_logging_payload["request_tags"]
                for tag in _tags:
                    self.litellm_deployment_failure_by_tag_responses.labels(
                        **{
                            UserAPIKeyLabelNames.REQUESTED_MODEL.value: model_group,
                            UserAPIKeyLabelNames.TAG.value: tag,
                            UserAPIKeyLabelNames.v2_LITELLM_MODEL_NAME.value: litellm_model_name,
                            UserAPIKeyLabelNames.MODEL_ID.value: model_id,
                            UserAPIKeyLabelNames.API_BASE.value: api_base,
                            UserAPIKeyLabelNames.API_PROVIDER.value: llm_provider,
                            UserAPIKeyLabelNames.EXCEPTION_CLASS.value: exception.__class__.__name__,
                            UserAPIKeyLabelNames.EXCEPTION_STATUS.value: str(
                                getattr(exception, "status_code", None)
                            ),
                        }
                    ).inc()

            self.litellm_deployment_total_requests.labels(
                litellm_model_name=litellm_model_name,
                model_id=model_id,
                api_base=api_base,
                api_provider=llm_provider,
                requested_model=model_group,
                hashed_api_key=standard_logging_payload["metadata"][
                    "user_api_key_hash"
                ],
                api_key_alias=standard_logging_payload["metadata"][
                    "user_api_key_alias"
                ],
                team=standard_logging_payload["metadata"]["user_api_key_team_id"],
                team_alias=standard_logging_payload["metadata"][
                    "user_api_key_team_alias"
                ],
            ).inc()

            pass
        except Exception as e:
            verbose_logger.debug(
                "Prometheus Error: set_llm_deployment_failure_metrics. Exception occured - {}".format(
                    str(e)
                )
            )

    def set_llm_deployment_success_metrics(
        self,
        request_kwargs: dict,
        start_time,
        end_time,
        enum_values: UserAPIKeyLabelValues,
        output_tokens: float = 1.0,
    ):
        try:
            verbose_logger.debug("setting remaining tokens requests metric")
            standard_logging_payload: Optional[StandardLoggingPayload] = (
                request_kwargs.get("standard_logging_object")
            )

            if standard_logging_payload is None:
                return

            model_group = standard_logging_payload["model_group"]
            api_base = standard_logging_payload["api_base"]
            _response_headers = request_kwargs.get("response_headers")
            _litellm_params = request_kwargs.get("litellm_params", {}) or {}
            _metadata = _litellm_params.get("metadata", {})
            litellm_model_name = request_kwargs.get("model", None)
            llm_provider = _litellm_params.get("custom_llm_provider", None)
            _model_info = _metadata.get("model_info") or {}
            model_id = _model_info.get("id", None)

            remaining_requests: Optional[int] = None
            remaining_tokens: Optional[int] = None
            if additional_headers := standard_logging_payload["hidden_params"][
                "additional_headers"
            ]:
                # OpenAI / OpenAI Compatible headers
                remaining_requests = additional_headers.get(
                    "x_ratelimit_remaining_requests", None
                )
                remaining_tokens = additional_headers.get(
                    "x_ratelimit_remaining_tokens", None
                )

            if litellm_overhead_time_ms := standard_logging_payload[
                "hidden_params"
            ].get("litellm_overhead_time_ms"):
                self.litellm_overhead_latency_metric.labels(
                    model_group,
                    llm_provider,
                    api_base,
                    litellm_model_name,
                    standard_logging_payload["metadata"]["user_api_key_hash"],
                    standard_logging_payload["metadata"]["user_api_key_alias"],
                ).observe(
                    litellm_overhead_time_ms / 1000
                )  # set as seconds

            if remaining_requests:
                """
                "model_group",
                "api_provider",
                "api_base",
                "litellm_model_name"
                """
                self.litellm_remaining_requests_metric.labels(
                    model_group,
                    llm_provider,
                    api_base,
                    litellm_model_name,
                    standard_logging_payload["metadata"]["user_api_key_hash"],
                    standard_logging_payload["metadata"]["user_api_key_alias"],
                ).set(remaining_requests)

            if remaining_tokens:
                self.litellm_remaining_tokens_metric.labels(
                    model_group,
                    llm_provider,
                    api_base,
                    litellm_model_name,
                    standard_logging_payload["metadata"]["user_api_key_hash"],
                    standard_logging_payload["metadata"]["user_api_key_alias"],
                ).set(remaining_tokens)

            """
            log these labels
            ["litellm_model_name", "requested_model", model_id", "api_base", "api_provider"]
            """
            self.set_deployment_healthy(
                litellm_model_name=litellm_model_name,
                model_id=model_id,
                api_base=api_base,
                api_provider=llm_provider,
            )

            self.litellm_deployment_success_responses.labels(
                litellm_model_name=litellm_model_name,
                model_id=model_id,
                api_base=api_base,
                api_provider=llm_provider,
                requested_model=model_group,
                hashed_api_key=standard_logging_payload["metadata"][
                    "user_api_key_hash"
                ],
                api_key_alias=standard_logging_payload["metadata"][
                    "user_api_key_alias"
                ],
                team=standard_logging_payload["metadata"]["user_api_key_team_id"],
                team_alias=standard_logging_payload["metadata"][
                    "user_api_key_team_alias"
                ],
            ).inc()

            self.litellm_deployment_total_requests.labels(
                litellm_model_name=litellm_model_name,
                model_id=model_id,
                api_base=api_base,
                api_provider=llm_provider,
                requested_model=model_group,
                hashed_api_key=standard_logging_payload["metadata"][
                    "user_api_key_hash"
                ],
                api_key_alias=standard_logging_payload["metadata"][
                    "user_api_key_alias"
                ],
                team=standard_logging_payload["metadata"]["user_api_key_team_id"],
                team_alias=standard_logging_payload["metadata"][
                    "user_api_key_team_alias"
                ],
            ).inc()

            # Track deployment Latency
            response_ms: timedelta = end_time - start_time
            time_to_first_token_response_time: Optional[timedelta] = None

            if (
                request_kwargs.get("stream", None) is not None
                and request_kwargs["stream"] is True
            ):
                # only log ttft for streaming request
                time_to_first_token_response_time = (
                    request_kwargs.get("completion_start_time", end_time) - start_time
                )

            # use the metric that is not None
            # if streaming - use time_to_first_token_response
            # if not streaming - use response_ms
            _latency: timedelta = time_to_first_token_response_time or response_ms
            _latency_seconds = _latency.total_seconds()

            # latency per output token
            latency_per_token = None
            if output_tokens is not None and output_tokens > 0:
                latency_per_token = _latency_seconds / output_tokens
                _labels = prometheus_label_factory(
                    supported_enum_labels=PrometheusMetricLabels.get_labels(
                        label_name="litellm_deployment_latency_per_output_token"
                    ),
                    enum_values=enum_values,
                )
                self.litellm_deployment_latency_per_output_token.labels(
                    **_labels
                ).observe(latency_per_token)

        except Exception as e:
            verbose_logger.error(
                "Prometheus Error: set_llm_deployment_success_metrics. Exception occured - {}".format(
                    str(e)
                )
            )
            return

    async def log_success_fallback_event(
        self, original_model_group: str, kwargs: dict, original_exception: Exception
    ):
        """

        Logs a successful LLM fallback event on prometheus

        """
        from litellm.litellm_core_utils.litellm_logging import (
            StandardLoggingMetadata,
            StandardLoggingPayloadSetup,
        )

        verbose_logger.debug(
            "Prometheus: log_success_fallback_event, original_model_group: %s, kwargs: %s",
            original_model_group,
            kwargs,
        )
        _metadata = kwargs.get("metadata", {})
        standard_metadata: StandardLoggingMetadata = (
            StandardLoggingPayloadSetup.get_standard_logging_metadata(
                metadata=_metadata
            )
        )
        _new_model = kwargs.get("model")
        _tags = cast(List[str], kwargs.get("tags") or [])

        enum_values = UserAPIKeyLabelValues(
            requested_model=original_model_group,
            fallback_model=_new_model,
            hashed_api_key=standard_metadata["user_api_key_hash"],
            api_key_alias=standard_metadata["user_api_key_alias"],
            team=standard_metadata["user_api_key_team_id"],
            team_alias=standard_metadata["user_api_key_team_alias"],
            exception_status=str(getattr(original_exception, "status_code", None)),
            exception_class=str(original_exception.__class__.__name__),
            tags=_tags,
        )
        _labels = prometheus_label_factory(
            supported_enum_labels=PrometheusMetricLabels.get_labels(
                label_name="litellm_deployment_successful_fallbacks"
            ),
            enum_values=enum_values,
        )
        self.litellm_deployment_successful_fallbacks.labels(**_labels).inc()

    async def log_failure_fallback_event(
        self, original_model_group: str, kwargs: dict, original_exception: Exception
    ):
        """
        Logs a failed LLM fallback event on prometheus
        """
        from litellm.litellm_core_utils.litellm_logging import (
            StandardLoggingMetadata,
            StandardLoggingPayloadSetup,
        )

        verbose_logger.debug(
            "Prometheus: log_failure_fallback_event, original_model_group: %s, kwargs: %s",
            original_model_group,
            kwargs,
        )
        _new_model = kwargs.get("model")
        _metadata = kwargs.get("metadata", {})
        _tags = cast(List[str], kwargs.get("tags") or [])
        standard_metadata: StandardLoggingMetadata = (
            StandardLoggingPayloadSetup.get_standard_logging_metadata(
                metadata=_metadata
            )
        )

        enum_values = UserAPIKeyLabelValues(
            requested_model=original_model_group,
            fallback_model=_new_model,
            hashed_api_key=standard_metadata["user_api_key_hash"],
            api_key_alias=standard_metadata["user_api_key_alias"],
            team=standard_metadata["user_api_key_team_id"],
            team_alias=standard_metadata["user_api_key_team_alias"],
            exception_status=str(getattr(original_exception, "status_code", None)),
            exception_class=str(original_exception.__class__.__name__),
            tags=_tags,
        )

        _labels = prometheus_label_factory(
            supported_enum_labels=PrometheusMetricLabels.get_labels(
                label_name="litellm_deployment_failed_fallbacks"
            ),
            enum_values=enum_values,
        )
        self.litellm_deployment_failed_fallbacks.labels(**_labels).inc()

    def set_litellm_deployment_state(
        self,
        state: int,
        litellm_model_name: str,
        model_id: Optional[str],
        api_base: Optional[str],
        api_provider: str,
    ):
        self.litellm_deployment_state.labels(
            litellm_model_name, model_id, api_base, api_provider
        ).set(state)

    def set_deployment_healthy(
        self,
        litellm_model_name: str,
        model_id: str,
        api_base: str,
        api_provider: str,
    ):
        self.set_litellm_deployment_state(
            0, litellm_model_name, model_id, api_base, api_provider
        )

    def set_deployment_partial_outage(
        self,
        litellm_model_name: str,
        model_id: Optional[str],
        api_base: Optional[str],
        api_provider: str,
    ):
        self.set_litellm_deployment_state(
            1, litellm_model_name, model_id, api_base, api_provider
        )

    def set_deployment_complete_outage(
        self,
        litellm_model_name: str,
        model_id: Optional[str],
        api_base: Optional[str],
        api_provider: str,
    ):
        self.set_litellm_deployment_state(
            2, litellm_model_name, model_id, api_base, api_provider
        )

    def increment_deployment_cooled_down(
        self,
        litellm_model_name: str,
        model_id: str,
        api_base: str,
        api_provider: str,
        exception_status: str,
    ):
        """
        increment metric when litellm.Router / load balancing logic places a deployment in cool down
        """
        self.litellm_deployment_cooled_down.labels(
            litellm_model_name, model_id, api_base, api_provider, exception_status
        ).inc()

    def track_provider_remaining_budget(
        self, provider: str, spend: float, budget_limit: float
    ):
        """
        Track provider remaining budget in Prometheus
        """
        self.litellm_provider_remaining_budget_metric.labels(provider).set(
            self._safe_get_remaining_budget(
                max_budget=budget_limit,
                spend=spend,
            )
        )

    def _safe_get_remaining_budget(
        self, max_budget: Optional[float], spend: Optional[float]
    ) -> float:
        if max_budget is None:
            return float("inf")

        if spend is None:
            return max_budget

        return max_budget - spend

    def _initialize_prometheus_startup_metrics(self):
        """
        Initialize prometheus startup metrics

        Helper to create tasks for initializing metrics that are required on startup - eg. remaining budget metrics
        """
        if litellm.prometheus_initialize_budget_metrics is not True:
            verbose_logger.debug("Prometheus: skipping budget metrics initialization")
            return

        try:
            if asyncio.get_running_loop():
                asyncio.create_task(self._initialize_remaining_budget_metrics())
        except RuntimeError as e:  # no running event loop
            verbose_logger.exception(
                f"No running event loop - skipping budget metrics initialization: {str(e)}"
            )

    async def _initialize_budget_metrics(
        self,
        data_fetch_function: Callable[..., Awaitable[Tuple[List[Any], Optional[int]]]],
        set_metrics_function: Callable[[List[Any]], Awaitable[None]],
        data_type: Literal["teams", "keys"],
    ):
        """
        Generic method to initialize budget metrics for teams or API keys.

        Args:
            data_fetch_function: Function to fetch data with pagination.
            set_metrics_function: Function to set metrics for the fetched data.
            data_type: String representing the type of data ("teams" or "keys") for logging purposes.
        """
        from litellm.proxy.proxy_server import prisma_client

        if prisma_client is None:
            return

        try:
            page = 1
            page_size = 50
            data, total_count = await data_fetch_function(
                page_size=page_size, page=page
            )

            if total_count is None:
                total_count = len(data)

            # Calculate total pages needed
            total_pages = (total_count + page_size - 1) // page_size

            # Set metrics for first page of data
            await set_metrics_function(data)

            # Get and set metrics for remaining pages
            for page in range(2, total_pages + 1):
                data, _ = await data_fetch_function(page_size=page_size, page=page)
                await set_metrics_function(data)

        except Exception as e:
            verbose_logger.exception(
                f"Error initializing {data_type} budget metrics: {str(e)}"
            )

    async def _initialize_team_budget_metrics(self):
        """
        Initialize team budget metrics by reusing the generic pagination logic.
        """
        from litellm.proxy.management_endpoints.team_endpoints import (
            get_paginated_teams,
        )
        from litellm.proxy.proxy_server import prisma_client

        if prisma_client is None:
            verbose_logger.debug(
                "Prometheus: skipping team metrics initialization, DB not initialized"
            )
            return

        async def fetch_teams(
            page_size: int, page: int
        ) -> Tuple[List[LiteLLM_TeamTable], Optional[int]]:
            teams, total_count = await get_paginated_teams(
                prisma_client=prisma_client, page_size=page_size, page=page
            )
            if total_count is None:
                total_count = len(teams)
            return teams, total_count

        await self._initialize_budget_metrics(
            data_fetch_function=fetch_teams,
            set_metrics_function=self._set_team_list_budget_metrics,
            data_type="teams",
        )

    async def _initialize_api_key_budget_metrics(self):
        """
        Initialize API key budget metrics by reusing the generic pagination logic.
        """
        from typing import Union

        from litellm.constants import UI_SESSION_TOKEN_TEAM_ID
        from litellm.proxy.management_endpoints.key_management_endpoints import (
            _list_key_helper,
        )
        from litellm.proxy.proxy_server import prisma_client

        if prisma_client is None:
            verbose_logger.debug(
                "Prometheus: skipping key metrics initialization, DB not initialized"
            )
            return

        async def fetch_keys(
            page_size: int, page: int
        ) -> Tuple[List[Union[str, UserAPIKeyAuth]], Optional[int]]:
            key_list_response = await _list_key_helper(
                prisma_client=prisma_client,
                page=page,
                size=page_size,
                user_id=None,
                team_id=None,
                key_alias=None,
                exclude_team_id=UI_SESSION_TOKEN_TEAM_ID,
                return_full_object=True,
            )
            keys = key_list_response.get("keys", [])
            total_count = key_list_response.get("total_count")
            if total_count is None:
                total_count = len(keys)
            return keys, total_count

        await self._initialize_budget_metrics(
            data_fetch_function=fetch_keys,
            set_metrics_function=self._set_key_list_budget_metrics,
            data_type="keys",
        )

    async def _initialize_remaining_budget_metrics(self):
        """
        Initialize remaining budget metrics for all teams to avoid metric discrepancies.

        Runs when prometheus logger starts up.
        """
        await self._initialize_team_budget_metrics()
        await self._initialize_api_key_budget_metrics()

    async def _set_key_list_budget_metrics(
        self, keys: List[Union[str, UserAPIKeyAuth]]
    ):
        """Helper function to set budget metrics for a list of keys"""
        for key in keys:
            if isinstance(key, UserAPIKeyAuth):
                self._set_key_budget_metrics(key)

    async def _set_team_list_budget_metrics(self, teams: List[LiteLLM_TeamTable]):
        """Helper function to set budget metrics for a list of teams"""
        for team in teams:
            self._set_team_budget_metrics(team)

    async def _set_team_budget_metrics_after_api_request(
        self,
        user_api_team: Optional[str],
        user_api_team_alias: Optional[str],
        team_spend: float,
        team_max_budget: float,
        response_cost: float,
    ):
        """
        Set team budget metrics after an LLM API request

        - Assemble a LiteLLM_TeamTable object
            - looks up team info from db if not available in metadata
        - Set team budget metrics
        """
        if user_api_team:
            team_object = await self._assemble_team_object(
                team_id=user_api_team,
                team_alias=user_api_team_alias or "",
                spend=team_spend,
                max_budget=team_max_budget,
                response_cost=response_cost,
            )

            self._set_team_budget_metrics(team_object)

    async def _assemble_team_object(
        self,
        team_id: str,
        team_alias: str,
        spend: Optional[float],
        max_budget: Optional[float],
        response_cost: float,
    ) -> LiteLLM_TeamTable:
        """
        Assemble a LiteLLM_TeamTable object

        for fields not available in metadata, we fetch from db
        Fields not available in metadata:
        - `budget_reset_at`
        """
        from litellm.proxy.auth.auth_checks import get_team_object
        from litellm.proxy.proxy_server import prisma_client, user_api_key_cache

        _total_team_spend = (spend or 0) + response_cost
        team_object = LiteLLM_TeamTable(
            team_id=team_id,
            team_alias=team_alias,
            spend=_total_team_spend,
            max_budget=max_budget,
        )
        try:
            team_info = await get_team_object(
                team_id=team_id,
                prisma_client=prisma_client,
                user_api_key_cache=user_api_key_cache,
            )
        except Exception as e:
            verbose_logger.debug(
                f"[Non-Blocking] Prometheus: Error getting team info: {str(e)}"
            )
            return team_object

        if team_info:
            team_object.budget_reset_at = team_info.budget_reset_at

        return team_object

    def _set_team_budget_metrics(
        self,
        team: LiteLLM_TeamTable,
    ):
        """
        Set team budget metrics for a single team

        - Remaining Budget
        - Max Budget
        - Budget Reset At
        """
        self.litellm_remaining_team_budget_metric.labels(
            team.team_id,
            team.team_alias or "",
        ).set(
            self._safe_get_remaining_budget(
                max_budget=team.max_budget,
                spend=team.spend,
            )
        )

        if team.max_budget is not None:
            self.litellm_team_max_budget_metric.labels(
                team.team_id,
                team.team_alias or "",
            ).set(team.max_budget)

        if team.budget_reset_at is not None:
            self.litellm_team_budget_remaining_hours_metric.labels(
                team.team_id,
                team.team_alias or "",
            ).set(
                self._get_remaining_hours_for_budget_reset(
                    budget_reset_at=team.budget_reset_at
                )
            )

    def _set_key_budget_metrics(self, user_api_key_dict: UserAPIKeyAuth):
        """
        Set virtual key budget metrics

        - Remaining Budget
        - Max Budget
        - Budget Reset At
        """
        enum_values = UserAPIKeyLabelValues(
            hashed_api_key=user_api_key_dict.token,
            api_key_alias=user_api_key_dict.key_alias or "",
        )
        _labels = prometheus_label_factory(
            supported_enum_labels=PrometheusMetricLabels.get_labels(
                label_name="litellm_remaining_api_key_budget_metric"
            ),
            enum_values=enum_values,
        )
        self.litellm_remaining_api_key_budget_metric.labels(**_labels).set(
            self._safe_get_remaining_budget(
                max_budget=user_api_key_dict.max_budget,
                spend=user_api_key_dict.spend,
            )
        )

        if user_api_key_dict.max_budget is not None:
            _labels = prometheus_label_factory(
                supported_enum_labels=PrometheusMetricLabels.get_labels(
                    label_name="litellm_api_key_max_budget_metric"
                ),
                enum_values=enum_values,
            )
            self.litellm_api_key_max_budget_metric.labels(**_labels).set(
                user_api_key_dict.max_budget
            )

        if user_api_key_dict.budget_reset_at is not None:
            self.litellm_api_key_budget_remaining_hours_metric.labels(**_labels).set(
                self._get_remaining_hours_for_budget_reset(
                    budget_reset_at=user_api_key_dict.budget_reset_at
                )
            )

    async def _set_api_key_budget_metrics_after_api_request(
        self,
        user_api_key: Optional[str],
        user_api_key_alias: Optional[str],
        response_cost: float,
        key_max_budget: float,
        key_spend: Optional[float],
    ):
        if user_api_key:
            user_api_key_dict = await self._assemble_key_object(
                user_api_key=user_api_key,
                user_api_key_alias=user_api_key_alias or "",
                key_max_budget=key_max_budget,
                key_spend=key_spend,
                response_cost=response_cost,
            )
            self._set_key_budget_metrics(user_api_key_dict)

    async def _assemble_key_object(
        self,
        user_api_key: str,
        user_api_key_alias: str,
        key_max_budget: float,
        key_spend: Optional[float],
        response_cost: float,
    ) -> UserAPIKeyAuth:
        """
        Assemble a UserAPIKeyAuth object
        """
        from litellm.proxy.auth.auth_checks import get_key_object
        from litellm.proxy.proxy_server import prisma_client, user_api_key_cache

        _total_key_spend = (key_spend or 0) + response_cost
        user_api_key_dict = UserAPIKeyAuth(
            token=user_api_key,
            key_alias=user_api_key_alias,
            max_budget=key_max_budget,
            spend=_total_key_spend,
        )
        try:
            if user_api_key_dict.token:
                key_object = await get_key_object(
                    hashed_token=user_api_key_dict.token,
                    prisma_client=prisma_client,
                    user_api_key_cache=user_api_key_cache,
                )
                if key_object:
                    user_api_key_dict.budget_reset_at = key_object.budget_reset_at
        except Exception as e:
            verbose_logger.debug(
                f"[Non-Blocking] Prometheus: Error getting key info: {str(e)}"
            )

        return user_api_key_dict

    def _get_remaining_hours_for_budget_reset(self, budget_reset_at: datetime) -> float:
        """
        Get remaining hours for budget reset
        """
        return (
            budget_reset_at - datetime.now(budget_reset_at.tzinfo)
        ).total_seconds() / 3600


def prometheus_label_factory(
    supported_enum_labels: List[str],
    enum_values: UserAPIKeyLabelValues,
    tag: Optional[str] = None,
) -> dict:
    """
    Returns a dictionary of label + values for prometheus.

    Ensures end_user param is not sent to prometheus if it is not supported.
    """
    # Extract dictionary from Pydantic object
    enum_dict = enum_values.model_dump()

    # Filter supported labels
    filtered_labels = {
        label: value
        for label, value in enum_dict.items()
        if label in supported_enum_labels
    }

    if UserAPIKeyLabelNames.END_USER.value in filtered_labels:
        filtered_labels["end_user"] = get_end_user_id_for_cost_tracking(
            litellm_params={"user_api_key_end_user_id": enum_values.end_user},
            service_type="prometheus",
        )

    if enum_values.custom_metadata_labels is not None:
        for key, value in enum_values.custom_metadata_labels.items():
            if key in supported_enum_labels:
                filtered_labels[key] = value

    for label in supported_enum_labels:
        if label not in filtered_labels:
            filtered_labels[label] = None

    return filtered_labels


def get_custom_labels_from_metadata(metadata: dict) -> Dict[str, str]:
    """
    Get custom labels from metadata
    """
    keys = litellm.custom_prometheus_metadata_labels
    if keys is None or len(keys) == 0:
        return {}

    result: Dict[str, str] = {}

    for key in keys:
        # Split the dot notation key into parts
        original_key = key
        key = key.replace("metadata.", "", 1) if key.startswith("metadata.") else key

        keys_parts = key.split(".")
        # Traverse through the dictionary using the parts
        value = metadata
        for part in keys_parts:
            value = value.get(part, None)  # Get the value, return None if not found
            if value is None:
                break

        if value is not None and isinstance(value, str):
            result[original_key.replace(".", "_")] = value

    return result