File size: 11,761 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
#### What this does ####
# This file contains the LiteralAILogger class which is used to log steps to the LiteralAI observability platform.
import asyncio
import os
import uuid
from typing import List, Optional
import httpx
from litellm._logging import verbose_logger
from litellm.integrations.custom_batch_logger import CustomBatchLogger
from litellm.llms.custom_httpx.http_handler import (
HTTPHandler,
get_async_httpx_client,
httpxSpecialProvider,
)
from litellm.types.utils import StandardLoggingPayload
class LiteralAILogger(CustomBatchLogger):
def __init__(
self,
literalai_api_key=None,
literalai_api_url="https://cloud.getliteral.ai",
env=None,
**kwargs,
):
self.literalai_api_url = os.getenv("LITERAL_API_URL") or literalai_api_url
self.headers = {
"Content-Type": "application/json",
"x-api-key": literalai_api_key or os.getenv("LITERAL_API_KEY"),
"x-client-name": "litellm",
}
if env:
self.headers["x-env"] = env
self.async_httpx_client = get_async_httpx_client(
llm_provider=httpxSpecialProvider.LoggingCallback
)
self.sync_http_handler = HTTPHandler()
batch_size = os.getenv("LITERAL_BATCH_SIZE", None)
self.flush_lock = asyncio.Lock()
super().__init__(
**kwargs,
flush_lock=self.flush_lock,
batch_size=int(batch_size) if batch_size else None,
)
def log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
verbose_logger.debug(
"Literal AI Layer Logging - kwargs: %s, response_obj: %s",
kwargs,
response_obj,
)
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
self.log_queue.append(data)
verbose_logger.debug(
"Literal AI logging: queue length %s, batch size %s",
len(self.log_queue),
self.batch_size,
)
if len(self.log_queue) >= self.batch_size:
self._send_batch()
except Exception:
verbose_logger.exception(
"Literal AI Layer Error - error logging success event."
)
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
verbose_logger.info("Literal AI Failure Event Logging!")
try:
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
self.log_queue.append(data)
verbose_logger.debug(
"Literal AI logging: queue length %s, batch size %s",
len(self.log_queue),
self.batch_size,
)
if len(self.log_queue) >= self.batch_size:
self._send_batch()
except Exception:
verbose_logger.exception(
"Literal AI Layer Error - error logging failure event."
)
def _send_batch(self):
if not self.log_queue:
return
url = f"{self.literalai_api_url}/api/graphql"
query = self._steps_query_builder(self.log_queue)
variables = self._steps_variables_builder(self.log_queue)
try:
response = self.sync_http_handler.post(
url=url,
json={
"query": query,
"variables": variables,
},
headers=self.headers,
)
if response.status_code >= 300:
verbose_logger.error(
f"Literal AI Error: {response.status_code} - {response.text}"
)
else:
verbose_logger.debug(
f"Batch of {len(self.log_queue)} runs successfully created"
)
except Exception:
verbose_logger.exception("Literal AI Layer Error")
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
verbose_logger.debug(
"Literal AI Async Layer Logging - kwargs: %s, response_obj: %s",
kwargs,
response_obj,
)
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
self.log_queue.append(data)
verbose_logger.debug(
"Literal AI logging: queue length %s, batch size %s",
len(self.log_queue),
self.batch_size,
)
if len(self.log_queue) >= self.batch_size:
await self.flush_queue()
except Exception:
verbose_logger.exception(
"Literal AI Layer Error - error logging async success event."
)
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
verbose_logger.info("Literal AI Failure Event Logging!")
try:
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
self.log_queue.append(data)
verbose_logger.debug(
"Literal AI logging: queue length %s, batch size %s",
len(self.log_queue),
self.batch_size,
)
if len(self.log_queue) >= self.batch_size:
await self.flush_queue()
except Exception:
verbose_logger.exception(
"Literal AI Layer Error - error logging async failure event."
)
async def async_send_batch(self):
if not self.log_queue:
return
url = f"{self.literalai_api_url}/api/graphql"
query = self._steps_query_builder(self.log_queue)
variables = self._steps_variables_builder(self.log_queue)
try:
response = await self.async_httpx_client.post(
url=url,
json={
"query": query,
"variables": variables,
},
headers=self.headers,
)
if response.status_code >= 300:
verbose_logger.error(
f"Literal AI Error: {response.status_code} - {response.text}"
)
else:
verbose_logger.debug(
f"Batch of {len(self.log_queue)} runs successfully created"
)
except httpx.HTTPStatusError as e:
verbose_logger.exception(
f"Literal AI HTTP Error: {e.response.status_code} - {e.response.text}"
)
except Exception:
verbose_logger.exception("Literal AI Layer Error")
def _prepare_log_data(self, kwargs, response_obj, start_time, end_time) -> dict:
logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
if logging_payload is None:
raise ValueError("standard_logging_object not found in kwargs")
clean_metadata = logging_payload["metadata"]
metadata = kwargs.get("litellm_params", {}).get("metadata", {})
settings = logging_payload["model_parameters"]
messages = logging_payload["messages"]
response = logging_payload["response"]
choices: List = []
if isinstance(response, dict) and "choices" in response:
choices = response["choices"]
message_completion = choices[0]["message"] if choices else None
prompt_id = None
variables = None
if messages and isinstance(messages, list) and isinstance(messages[0], dict):
for message in messages:
if literal_prompt := getattr(message, "__literal_prompt__", None):
prompt_id = literal_prompt.get("prompt_id")
variables = literal_prompt.get("variables")
message["uuid"] = literal_prompt.get("uuid")
message["templated"] = True
tools = settings.pop("tools", None)
step = {
"id": metadata.get("step_id", str(uuid.uuid4())),
"error": logging_payload["error_str"],
"name": kwargs.get("model", ""),
"threadId": metadata.get("literalai_thread_id", None),
"parentId": metadata.get("literalai_parent_id", None),
"rootRunId": metadata.get("literalai_root_run_id", None),
"input": None,
"output": None,
"type": "llm",
"tags": metadata.get("tags", metadata.get("literalai_tags", None)),
"startTime": str(start_time),
"endTime": str(end_time),
"metadata": clean_metadata,
"generation": {
"inputTokenCount": logging_payload["prompt_tokens"],
"outputTokenCount": logging_payload["completion_tokens"],
"tokenCount": logging_payload["total_tokens"],
"promptId": prompt_id,
"variables": variables,
"provider": kwargs.get("custom_llm_provider", "litellm"),
"model": kwargs.get("model", ""),
"duration": (end_time - start_time).total_seconds(),
"settings": settings,
"messages": messages,
"messageCompletion": message_completion,
"tools": tools,
},
}
return step
def _steps_query_variables_builder(self, steps):
generated = ""
for id in range(len(steps)):
generated += f"""$id_{id}: String!
$threadId_{id}: String
$rootRunId_{id}: String
$type_{id}: StepType
$startTime_{id}: DateTime
$endTime_{id}: DateTime
$error_{id}: String
$input_{id}: Json
$output_{id}: Json
$metadata_{id}: Json
$parentId_{id}: String
$name_{id}: String
$tags_{id}: [String!]
$generation_{id}: GenerationPayloadInput
$scores_{id}: [ScorePayloadInput!]
$attachments_{id}: [AttachmentPayloadInput!]
"""
return generated
def _steps_ingest_steps_builder(self, steps):
generated = ""
for id in range(len(steps)):
generated += f"""
step{id}: ingestStep(
id: $id_{id}
threadId: $threadId_{id}
rootRunId: $rootRunId_{id}
startTime: $startTime_{id}
endTime: $endTime_{id}
type: $type_{id}
error: $error_{id}
input: $input_{id}
output: $output_{id}
metadata: $metadata_{id}
parentId: $parentId_{id}
name: $name_{id}
tags: $tags_{id}
generation: $generation_{id}
scores: $scores_{id}
attachments: $attachments_{id}
) {{
ok
message
}}
"""
return generated
def _steps_query_builder(self, steps):
return f"""
mutation AddStep({self._steps_query_variables_builder(steps)}) {{
{self._steps_ingest_steps_builder(steps)}
}}
"""
def _steps_variables_builder(self, steps):
def serialize_step(event, id):
result = {}
for key, value in event.items():
# Only keep the keys that are not None to avoid overriding existing values
if value is not None:
result[f"{key}_{id}"] = value
return result
variables = {}
for i in range(len(steps)):
step = steps[i]
variables.update(serialize_step(step, i))
return variables
|