File size: 34,761 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
#### What this does ####
#    On success, logs events to Langfuse
import copy
import os
import traceback
from typing import TYPE_CHECKING, Any, Dict, List, Optional, cast

from packaging.version import Version

import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.redact_messages import redact_user_api_key_info
from litellm.llms.custom_httpx.http_handler import _get_httpx_client
from litellm.secret_managers.main import str_to_bool
from litellm.types.integrations.langfuse import *
from litellm.types.utils import (
    StandardLoggingPayload,
    StandardLoggingPromptManagementMetadata,
)

if TYPE_CHECKING:
    from litellm.litellm_core_utils.litellm_logging import DynamicLoggingCache
else:
    DynamicLoggingCache = Any


class LangFuseLogger:
    # Class variables or attributes
    def __init__(
        self,
        langfuse_public_key=None,
        langfuse_secret=None,
        langfuse_host=None,
        flush_interval=1,
    ):
        try:
            import langfuse
            from langfuse import Langfuse
        except Exception as e:
            raise Exception(
                f"\033[91mLangfuse not installed, try running 'pip install langfuse' to fix this error: {e}\n{traceback.format_exc()}\033[0m"
            )
        # Instance variables
        self.secret_key = langfuse_secret or os.getenv("LANGFUSE_SECRET_KEY")
        self.public_key = langfuse_public_key or os.getenv("LANGFUSE_PUBLIC_KEY")
        self.langfuse_host = langfuse_host or os.getenv(
            "LANGFUSE_HOST", "https://cloud.langfuse.com"
        )
        if not (
            self.langfuse_host.startswith("http://")
            or self.langfuse_host.startswith("https://")
        ):
            # add http:// if unset, assume communicating over private network - e.g. render
            self.langfuse_host = "http://" + self.langfuse_host
        self.langfuse_release = os.getenv("LANGFUSE_RELEASE")
        self.langfuse_debug = os.getenv("LANGFUSE_DEBUG")
        self.langfuse_flush_interval = LangFuseLogger._get_langfuse_flush_interval(
            flush_interval
        )
        http_client = _get_httpx_client()
        self.langfuse_client = http_client.client

        parameters = {
            "public_key": self.public_key,
            "secret_key": self.secret_key,
            "host": self.langfuse_host,
            "release": self.langfuse_release,
            "debug": self.langfuse_debug,
            "flush_interval": self.langfuse_flush_interval,  # flush interval in seconds
            "httpx_client": self.langfuse_client,
        }
        self.langfuse_sdk_version: str = langfuse.version.__version__

        if Version(self.langfuse_sdk_version) >= Version("2.6.0"):
            parameters["sdk_integration"] = "litellm"

        self.Langfuse = Langfuse(**parameters)

        # set the current langfuse project id in the environ
        # this is used by Alerting to link to the correct project
        try:
            project_id = self.Langfuse.client.projects.get().data[0].id
            os.environ["LANGFUSE_PROJECT_ID"] = project_id
        except Exception:
            project_id = None

        if os.getenv("UPSTREAM_LANGFUSE_SECRET_KEY") is not None:
            upstream_langfuse_debug = (
                str_to_bool(self.upstream_langfuse_debug)
                if self.upstream_langfuse_debug is not None
                else None
            )
            self.upstream_langfuse_secret_key = os.getenv(
                "UPSTREAM_LANGFUSE_SECRET_KEY"
            )
            self.upstream_langfuse_public_key = os.getenv(
                "UPSTREAM_LANGFUSE_PUBLIC_KEY"
            )
            self.upstream_langfuse_host = os.getenv("UPSTREAM_LANGFUSE_HOST")
            self.upstream_langfuse_release = os.getenv("UPSTREAM_LANGFUSE_RELEASE")
            self.upstream_langfuse_debug = os.getenv("UPSTREAM_LANGFUSE_DEBUG")
            self.upstream_langfuse = Langfuse(
                public_key=self.upstream_langfuse_public_key,
                secret_key=self.upstream_langfuse_secret_key,
                host=self.upstream_langfuse_host,
                release=self.upstream_langfuse_release,
                debug=(
                    upstream_langfuse_debug
                    if upstream_langfuse_debug is not None
                    else False
                ),
            )
        else:
            self.upstream_langfuse = None

    @staticmethod
    def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict:
        """
        Adds metadata from proxy request headers to Langfuse logging if keys start with "langfuse_"
        and overwrites litellm_params.metadata if already included.

        For example if you want to append your trace to an existing `trace_id` via header, send
        `headers: { ..., langfuse_existing_trace_id: your-existing-trace-id }` via proxy request.
        """
        if litellm_params is None:
            return metadata

        if litellm_params.get("proxy_server_request") is None:
            return metadata

        if metadata is None:
            metadata = {}

        proxy_headers = (
            litellm_params.get("proxy_server_request", {}).get("headers", {}) or {}
        )

        for metadata_param_key in proxy_headers:
            if metadata_param_key.startswith("langfuse_"):
                trace_param_key = metadata_param_key.replace("langfuse_", "", 1)
                if trace_param_key in metadata:
                    verbose_logger.warning(
                        f"Overwriting Langfuse `{trace_param_key}` from request header"
                    )
                else:
                    verbose_logger.debug(
                        f"Found Langfuse `{trace_param_key}` in request header"
                    )
                metadata[trace_param_key] = proxy_headers.get(metadata_param_key)

        return metadata

    def _old_log_event(  # noqa: PLR0915
        self,
        kwargs,
        response_obj,
        start_time,
        end_time,
        user_id,
        print_verbose,
        level="DEFAULT",
        status_message=None,
    ) -> dict:
        # Method definition

        try:
            verbose_logger.debug(
                f"Langfuse Logging - Enters logging function for model {kwargs}"
            )

            # set default values for input/output for langfuse logging
            input = None
            output = None

            litellm_params = kwargs.get("litellm_params", {})
            litellm_call_id = kwargs.get("litellm_call_id", None)
            metadata = (
                litellm_params.get("metadata", {}) or {}
            )  # if litellm_params['metadata'] == None
            metadata = self.add_metadata_from_header(litellm_params, metadata)
            optional_params = copy.deepcopy(kwargs.get("optional_params", {}))

            prompt = {"messages": kwargs.get("messages")}

            functions = optional_params.pop("functions", None)
            tools = optional_params.pop("tools", None)
            if functions is not None:
                prompt["functions"] = functions
            if tools is not None:
                prompt["tools"] = tools

            # langfuse only accepts str, int, bool, float for logging
            for param, value in optional_params.items():
                if not isinstance(value, (str, int, bool, float)):
                    try:
                        optional_params[param] = str(value)
                    except Exception:
                        # if casting value to str fails don't block logging
                        pass

            # end of processing langfuse ########################
            if (
                level == "ERROR"
                and status_message is not None
                and isinstance(status_message, str)
            ):
                input = prompt
                output = status_message
            elif response_obj is not None and (
                kwargs.get("call_type", None) == "embedding"
                or isinstance(response_obj, litellm.EmbeddingResponse)
            ):
                input = prompt
                output = None
            elif response_obj is not None and isinstance(
                response_obj, litellm.ModelResponse
            ):
                input = prompt
                output = response_obj["choices"][0]["message"].json()
            elif response_obj is not None and isinstance(
                response_obj, litellm.HttpxBinaryResponseContent
            ):
                input = prompt
                output = "speech-output"
            elif response_obj is not None and isinstance(
                response_obj, litellm.TextCompletionResponse
            ):
                input = prompt
                output = response_obj.choices[0].text
            elif response_obj is not None and isinstance(
                response_obj, litellm.ImageResponse
            ):
                input = prompt
                output = response_obj["data"]
            elif response_obj is not None and isinstance(
                response_obj, litellm.TranscriptionResponse
            ):
                input = prompt
                output = response_obj["text"]
            elif response_obj is not None and isinstance(
                response_obj, litellm.RerankResponse
            ):
                input = prompt
                output = response_obj.results
            elif (
                kwargs.get("call_type") is not None
                and kwargs.get("call_type") == "_arealtime"
                and response_obj is not None
                and isinstance(response_obj, list)
            ):
                input = kwargs.get("input")
                output = response_obj
            elif (
                kwargs.get("call_type") is not None
                and kwargs.get("call_type") == "pass_through_endpoint"
                and response_obj is not None
                and isinstance(response_obj, dict)
            ):
                input = prompt
                output = response_obj.get("response", "")
            verbose_logger.debug(
                f"OUTPUT IN LANGFUSE: {output}; original: {response_obj}"
            )
            trace_id = None
            generation_id = None
            if self._is_langfuse_v2():
                trace_id, generation_id = self._log_langfuse_v2(
                    user_id,
                    metadata,
                    litellm_params,
                    output,
                    start_time,
                    end_time,
                    kwargs,
                    optional_params,
                    input,
                    response_obj,
                    level,
                    print_verbose,
                    litellm_call_id,
                )
            elif response_obj is not None:
                self._log_langfuse_v1(
                    user_id,
                    metadata,
                    output,
                    start_time,
                    end_time,
                    kwargs,
                    optional_params,
                    input,
                    response_obj,
                )
            verbose_logger.debug(
                f"Langfuse Layer Logging - final response object: {response_obj}"
            )
            verbose_logger.info("Langfuse Layer Logging - logging success")

            return {"trace_id": trace_id, "generation_id": generation_id}
        except Exception as e:
            verbose_logger.exception(
                "Langfuse Layer Error(): Exception occured - {}".format(str(e))
            )
            return {"trace_id": None, "generation_id": None}

    async def _async_log_event(
        self, kwargs, response_obj, start_time, end_time, user_id, print_verbose
    ):
        """
        TODO: support async calls when langfuse is truly async
        """

    def _is_langfuse_v2(self):
        import langfuse

        return Version(langfuse.version.__version__) >= Version("2.0.0")

    def _log_langfuse_v1(
        self,
        user_id,
        metadata,
        output,
        start_time,
        end_time,
        kwargs,
        optional_params,
        input,
        response_obj,
    ):
        from langfuse.model import CreateGeneration, CreateTrace  # type: ignore

        verbose_logger.warning(
            "Please upgrade langfuse to v2.0.0 or higher: https://github.com/langfuse/langfuse-python/releases/tag/v2.0.1"
        )

        trace = self.Langfuse.trace(  # type: ignore
            CreateTrace(  # type: ignore
                name=metadata.get("generation_name", "litellm-completion"),
                input=input,
                output=output,
                userId=user_id,
            )
        )

        trace.generation(
            CreateGeneration(
                name=metadata.get("generation_name", "litellm-completion"),
                startTime=start_time,
                endTime=end_time,
                model=kwargs["model"],
                modelParameters=optional_params,
                prompt=input,
                completion=output,
                usage={
                    "prompt_tokens": response_obj.usage.prompt_tokens,
                    "completion_tokens": response_obj.usage.completion_tokens,
                },
                metadata=metadata,
            )
        )

    def _log_langfuse_v2(  # noqa: PLR0915
        self,
        user_id,
        metadata,
        litellm_params,
        output,
        start_time,
        end_time,
        kwargs,
        optional_params,
        input,
        response_obj,
        level,
        print_verbose,
        litellm_call_id,
    ) -> tuple:
        verbose_logger.debug("Langfuse Layer Logging - logging to langfuse v2")

        try:
            metadata = metadata or {}
            standard_logging_object: Optional[StandardLoggingPayload] = cast(
                Optional[StandardLoggingPayload],
                kwargs.get("standard_logging_object", None),
            )
            tags = (
                self._get_langfuse_tags(standard_logging_object=standard_logging_object)
                if self._supports_tags()
                else []
            )

            if standard_logging_object is None:
                end_user_id = None
                prompt_management_metadata: Optional[
                    StandardLoggingPromptManagementMetadata
                ] = None
            else:
                end_user_id = standard_logging_object["metadata"].get(
                    "user_api_key_end_user_id", None
                )

                prompt_management_metadata = cast(
                    Optional[StandardLoggingPromptManagementMetadata],
                    standard_logging_object["metadata"].get(
                        "prompt_management_metadata", None
                    ),
                )

            # Clean Metadata before logging - never log raw metadata
            # the raw metadata can contain circular references which leads to infinite recursion
            # we clean out all extra litellm metadata params before logging
            clean_metadata: Dict[str, Any] = {}
            if prompt_management_metadata is not None:
                clean_metadata["prompt_management_metadata"] = (
                    prompt_management_metadata
                )
            if isinstance(metadata, dict):
                for key, value in metadata.items():
                    # generate langfuse tags - Default Tags sent to Langfuse from LiteLLM Proxy
                    if (
                        litellm.langfuse_default_tags is not None
                        and isinstance(litellm.langfuse_default_tags, list)
                        and key in litellm.langfuse_default_tags
                    ):
                        tags.append(f"{key}:{value}")

                    # clean litellm metadata before logging
                    if key in [
                        "headers",
                        "endpoint",
                        "caching_groups",
                        "previous_models",
                    ]:
                        continue
                    else:
                        clean_metadata[key] = value

            # Add default langfuse tags
            tags = self.add_default_langfuse_tags(
                tags=tags, kwargs=kwargs, metadata=metadata
            )

            session_id = clean_metadata.pop("session_id", None)
            trace_name = cast(Optional[str], clean_metadata.pop("trace_name", None))
            trace_id = clean_metadata.pop("trace_id", litellm_call_id)
            existing_trace_id = clean_metadata.pop("existing_trace_id", None)
            update_trace_keys = cast(list, clean_metadata.pop("update_trace_keys", []))
            debug = clean_metadata.pop("debug_langfuse", None)
            mask_input = clean_metadata.pop("mask_input", False)
            mask_output = clean_metadata.pop("mask_output", False)

            clean_metadata = redact_user_api_key_info(metadata=clean_metadata)

            if trace_name is None and existing_trace_id is None:
                # just log `litellm-{call_type}` as the trace name
                ## DO NOT SET TRACE_NAME if trace-id set. this can lead to overwriting of past traces.
                trace_name = f"litellm-{kwargs.get('call_type', 'completion')}"

            if existing_trace_id is not None:
                trace_params: Dict[str, Any] = {"id": existing_trace_id}

                # Update the following keys for this trace
                for metadata_param_key in update_trace_keys:
                    trace_param_key = metadata_param_key.replace("trace_", "")
                    if trace_param_key not in trace_params:
                        updated_trace_value = clean_metadata.pop(
                            metadata_param_key, None
                        )
                        if updated_trace_value is not None:
                            trace_params[trace_param_key] = updated_trace_value

                # Pop the trace specific keys that would have been popped if there were a new trace
                for key in list(
                    filter(lambda key: key.startswith("trace_"), clean_metadata.keys())
                ):
                    clean_metadata.pop(key, None)

                # Special keys that are found in the function arguments and not the metadata
                if "input" in update_trace_keys:
                    trace_params["input"] = (
                        input if not mask_input else "redacted-by-litellm"
                    )
                if "output" in update_trace_keys:
                    trace_params["output"] = (
                        output if not mask_output else "redacted-by-litellm"
                    )
            else:  # don't overwrite an existing trace
                trace_params = {
                    "id": trace_id,
                    "name": trace_name,
                    "session_id": session_id,
                    "input": input if not mask_input else "redacted-by-litellm",
                    "version": clean_metadata.pop(
                        "trace_version", clean_metadata.get("version", None)
                    ),  # If provided just version, it will applied to the trace as well, if applied a trace version it will take precedence
                    "user_id": end_user_id,
                }
                for key in list(
                    filter(lambda key: key.startswith("trace_"), clean_metadata.keys())
                ):
                    trace_params[key.replace("trace_", "")] = clean_metadata.pop(
                        key, None
                    )

                if level == "ERROR":
                    trace_params["status_message"] = output
                else:
                    trace_params["output"] = (
                        output if not mask_output else "redacted-by-litellm"
                    )

            if debug is True or (isinstance(debug, str) and debug.lower() == "true"):
                if "metadata" in trace_params:
                    # log the raw_metadata in the trace
                    trace_params["metadata"]["metadata_passed_to_litellm"] = metadata
                else:
                    trace_params["metadata"] = {"metadata_passed_to_litellm": metadata}

            cost = kwargs.get("response_cost", None)
            verbose_logger.debug(f"trace: {cost}")

            clean_metadata["litellm_response_cost"] = cost
            if standard_logging_object is not None:
                clean_metadata["hidden_params"] = standard_logging_object[
                    "hidden_params"
                ]

            if (
                litellm.langfuse_default_tags is not None
                and isinstance(litellm.langfuse_default_tags, list)
                and "proxy_base_url" in litellm.langfuse_default_tags
            ):
                proxy_base_url = os.environ.get("PROXY_BASE_URL", None)
                if proxy_base_url is not None:
                    tags.append(f"proxy_base_url:{proxy_base_url}")

            api_base = litellm_params.get("api_base", None)
            if api_base:
                clean_metadata["api_base"] = api_base

            vertex_location = kwargs.get("vertex_location", None)
            if vertex_location:
                clean_metadata["vertex_location"] = vertex_location

            aws_region_name = kwargs.get("aws_region_name", None)
            if aws_region_name:
                clean_metadata["aws_region_name"] = aws_region_name

            if self._supports_tags():
                if "cache_hit" in kwargs:
                    if kwargs["cache_hit"] is None:
                        kwargs["cache_hit"] = False
                    clean_metadata["cache_hit"] = kwargs["cache_hit"]
                if existing_trace_id is None:
                    trace_params.update({"tags": tags})

            proxy_server_request = litellm_params.get("proxy_server_request", None)
            if proxy_server_request:
                proxy_server_request.get("method", None)
                proxy_server_request.get("url", None)
                headers = proxy_server_request.get("headers", None)
                clean_headers = {}
                if headers:
                    for key, value in headers.items():
                        # these headers can leak our API keys and/or JWT tokens
                        if key.lower() not in ["authorization", "cookie", "referer"]:
                            clean_headers[key] = value

                # clean_metadata["request"] = {
                #     "method": method,
                #     "url": url,
                #     "headers": clean_headers,
                # }
            trace = self.Langfuse.trace(**trace_params)

            # Log provider specific information as a span
            log_provider_specific_information_as_span(trace, clean_metadata)

            generation_id = None
            usage = None
            if response_obj is not None:
                if (
                    hasattr(response_obj, "id")
                    and response_obj.get("id", None) is not None
                ):
                    generation_id = litellm.utils.get_logging_id(
                        start_time, response_obj
                    )
                _usage_obj = getattr(response_obj, "usage", None)

                if _usage_obj:
                    usage = {
                        "prompt_tokens": _usage_obj.prompt_tokens,
                        "completion_tokens": _usage_obj.completion_tokens,
                        "total_cost": cost if self._supports_costs() else None,
                    }
            generation_name = clean_metadata.pop("generation_name", None)
            if generation_name is None:
                # if `generation_name` is None, use sensible default values
                # If using litellm proxy user `key_alias` if not None
                # If `key_alias` is None, just log `litellm-{call_type}` as the generation name
                _user_api_key_alias = cast(
                    Optional[str], clean_metadata.get("user_api_key_alias", None)
                )
                generation_name = (
                    f"litellm-{cast(str, kwargs.get('call_type', 'completion'))}"
                )
                if _user_api_key_alias is not None:
                    generation_name = f"litellm:{_user_api_key_alias}"

            if response_obj is not None:
                system_fingerprint = getattr(response_obj, "system_fingerprint", None)
            else:
                system_fingerprint = None

            if system_fingerprint is not None:
                optional_params["system_fingerprint"] = system_fingerprint

            generation_params = {
                "name": generation_name,
                "id": clean_metadata.pop("generation_id", generation_id),
                "start_time": start_time,
                "end_time": end_time,
                "model": kwargs["model"],
                "model_parameters": optional_params,
                "input": input if not mask_input else "redacted-by-litellm",
                "output": output if not mask_output else "redacted-by-litellm",
                "usage": usage,
                "metadata": log_requester_metadata(clean_metadata),
                "level": level,
                "version": clean_metadata.pop("version", None),
            }

            parent_observation_id = metadata.get("parent_observation_id", None)
            if parent_observation_id is not None:
                generation_params["parent_observation_id"] = parent_observation_id

            if self._supports_prompt():
                generation_params = _add_prompt_to_generation_params(
                    generation_params=generation_params,
                    clean_metadata=clean_metadata,
                    prompt_management_metadata=prompt_management_metadata,
                    langfuse_client=self.Langfuse,
                )
            if output is not None and isinstance(output, str) and level == "ERROR":
                generation_params["status_message"] = output

            if self._supports_completion_start_time():
                generation_params["completion_start_time"] = kwargs.get(
                    "completion_start_time", None
                )

            generation_client = trace.generation(**generation_params)

            return generation_client.trace_id, generation_id
        except Exception:
            verbose_logger.error(f"Langfuse Layer Error - {traceback.format_exc()}")
            return None, None

    @staticmethod
    def _get_langfuse_tags(
        standard_logging_object: Optional[StandardLoggingPayload],
    ) -> List[str]:
        if standard_logging_object is None:
            return []
        return standard_logging_object.get("request_tags", []) or []

    def add_default_langfuse_tags(self, tags, kwargs, metadata):
        """
        Helper function to add litellm default langfuse tags

        - Special LiteLLM tags:
            - cache_hit
            - cache_key

        """
        if litellm.langfuse_default_tags is not None and isinstance(
            litellm.langfuse_default_tags, list
        ):
            if "cache_hit" in litellm.langfuse_default_tags:
                _cache_hit_value = kwargs.get("cache_hit", False)
                tags.append(f"cache_hit:{_cache_hit_value}")
            if "cache_key" in litellm.langfuse_default_tags:
                _hidden_params = metadata.get("hidden_params", {}) or {}
                _cache_key = _hidden_params.get("cache_key", None)
                if _cache_key is None and litellm.cache is not None:
                    # fallback to using "preset_cache_key"
                    _preset_cache_key = litellm.cache._get_preset_cache_key_from_kwargs(
                        **kwargs
                    )
                    _cache_key = _preset_cache_key
                tags.append(f"cache_key:{_cache_key}")
        return tags

    def _supports_tags(self):
        """Check if current langfuse version supports tags"""
        return Version(self.langfuse_sdk_version) >= Version("2.6.3")

    def _supports_prompt(self):
        """Check if current langfuse version supports prompt"""
        return Version(self.langfuse_sdk_version) >= Version("2.7.3")

    def _supports_costs(self):
        """Check if current langfuse version supports costs"""
        return Version(self.langfuse_sdk_version) >= Version("2.7.3")

    def _supports_completion_start_time(self):
        """Check if current langfuse version supports completion start time"""
        return Version(self.langfuse_sdk_version) >= Version("2.7.3")

    @staticmethod
    def _get_langfuse_flush_interval(flush_interval: int) -> int:
        """
        Get the langfuse flush interval to initialize the Langfuse client

        Reads `LANGFUSE_FLUSH_INTERVAL` from the environment variable.
        If not set, uses the flush interval passed in as an argument.

        Args:
            flush_interval: The flush interval to use if LANGFUSE_FLUSH_INTERVAL is not set

        Returns:
            [int] The flush interval to use to initialize the Langfuse client
        """
        return int(os.getenv("LANGFUSE_FLUSH_INTERVAL") or flush_interval)


def _add_prompt_to_generation_params(
    generation_params: dict,
    clean_metadata: dict,
    prompt_management_metadata: Optional[StandardLoggingPromptManagementMetadata],
    langfuse_client: Any,
) -> dict:
    from langfuse import Langfuse
    from langfuse.model import (
        ChatPromptClient,
        Prompt_Chat,
        Prompt_Text,
        TextPromptClient,
    )

    langfuse_client = cast(Langfuse, langfuse_client)

    user_prompt = clean_metadata.pop("prompt", None)
    if user_prompt is None and prompt_management_metadata is None:
        pass
    elif isinstance(user_prompt, dict):
        if user_prompt.get("type", "") == "chat":
            _prompt_chat = Prompt_Chat(**user_prompt)
            generation_params["prompt"] = ChatPromptClient(prompt=_prompt_chat)
        elif user_prompt.get("type", "") == "text":
            _prompt_text = Prompt_Text(**user_prompt)
            generation_params["prompt"] = TextPromptClient(prompt=_prompt_text)
        elif "version" in user_prompt and "prompt" in user_prompt:
            # prompts
            if isinstance(user_prompt["prompt"], str):
                prompt_text_params = getattr(
                    Prompt_Text, "model_fields", Prompt_Text.__fields__
                )
                _data = {
                    "name": user_prompt["name"],
                    "prompt": user_prompt["prompt"],
                    "version": user_prompt["version"],
                    "config": user_prompt.get("config", None),
                }
                if "labels" in prompt_text_params and "tags" in prompt_text_params:
                    _data["labels"] = user_prompt.get("labels", []) or []
                    _data["tags"] = user_prompt.get("tags", []) or []
                _prompt_obj = Prompt_Text(**_data)  # type: ignore
                generation_params["prompt"] = TextPromptClient(prompt=_prompt_obj)

            elif isinstance(user_prompt["prompt"], list):
                prompt_chat_params = getattr(
                    Prompt_Chat, "model_fields", Prompt_Chat.__fields__
                )
                _data = {
                    "name": user_prompt["name"],
                    "prompt": user_prompt["prompt"],
                    "version": user_prompt["version"],
                    "config": user_prompt.get("config", None),
                }
                if "labels" in prompt_chat_params and "tags" in prompt_chat_params:
                    _data["labels"] = user_prompt.get("labels", []) or []
                    _data["tags"] = user_prompt.get("tags", []) or []

                _prompt_obj = Prompt_Chat(**_data)  # type: ignore

                generation_params["prompt"] = ChatPromptClient(prompt=_prompt_obj)
            else:
                verbose_logger.error(
                    "[Non-blocking] Langfuse Logger: Invalid prompt format"
                )
        else:
            verbose_logger.error(
                "[Non-blocking] Langfuse Logger: Invalid prompt format. No prompt logged to Langfuse"
            )
    elif (
        prompt_management_metadata is not None
        and prompt_management_metadata["prompt_integration"] == "langfuse"
    ):
        try:
            generation_params["prompt"] = langfuse_client.get_prompt(
                prompt_management_metadata["prompt_id"]
            )
        except Exception as e:
            verbose_logger.debug(
                f"[Non-blocking] Langfuse Logger: Error getting prompt client for logging: {e}"
            )
            pass

    else:
        generation_params["prompt"] = user_prompt

    return generation_params


def log_provider_specific_information_as_span(
    trace,
    clean_metadata,
):
    """
    Logs provider-specific information as spans.

    Parameters:
        trace: The tracing object used to log spans.
        clean_metadata: A dictionary containing metadata to be logged.

    Returns:
        None
    """

    _hidden_params = clean_metadata.get("hidden_params", None)
    if _hidden_params is None:
        return

    vertex_ai_grounding_metadata = _hidden_params.get(
        "vertex_ai_grounding_metadata", None
    )

    if vertex_ai_grounding_metadata is not None:
        if isinstance(vertex_ai_grounding_metadata, list):
            for elem in vertex_ai_grounding_metadata:
                if isinstance(elem, dict):
                    for key, value in elem.items():
                        trace.span(
                            name=key,
                            input=value,
                        )
                else:
                    trace.span(
                        name="vertex_ai_grounding_metadata",
                        input=elem,
                    )
        else:
            trace.span(
                name="vertex_ai_grounding_metadata",
                input=vertex_ai_grounding_metadata,
            )


def log_requester_metadata(clean_metadata: dict):
    returned_metadata = {}
    requester_metadata = clean_metadata.get("requester_metadata") or {}
    for k, v in clean_metadata.items():
        if k not in requester_metadata:
            returned_metadata[k] = v

    returned_metadata.update({"requester_metadata": requester_metadata})

    return returned_metadata