File size: 34,761 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 |
#### What this does ####
# On success, logs events to Langfuse
import copy
import os
import traceback
from typing import TYPE_CHECKING, Any, Dict, List, Optional, cast
from packaging.version import Version
import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.redact_messages import redact_user_api_key_info
from litellm.llms.custom_httpx.http_handler import _get_httpx_client
from litellm.secret_managers.main import str_to_bool
from litellm.types.integrations.langfuse import *
from litellm.types.utils import (
StandardLoggingPayload,
StandardLoggingPromptManagementMetadata,
)
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import DynamicLoggingCache
else:
DynamicLoggingCache = Any
class LangFuseLogger:
# Class variables or attributes
def __init__(
self,
langfuse_public_key=None,
langfuse_secret=None,
langfuse_host=None,
flush_interval=1,
):
try:
import langfuse
from langfuse import Langfuse
except Exception as e:
raise Exception(
f"\033[91mLangfuse not installed, try running 'pip install langfuse' to fix this error: {e}\n{traceback.format_exc()}\033[0m"
)
# Instance variables
self.secret_key = langfuse_secret or os.getenv("LANGFUSE_SECRET_KEY")
self.public_key = langfuse_public_key or os.getenv("LANGFUSE_PUBLIC_KEY")
self.langfuse_host = langfuse_host or os.getenv(
"LANGFUSE_HOST", "https://cloud.langfuse.com"
)
if not (
self.langfuse_host.startswith("http://")
or self.langfuse_host.startswith("https://")
):
# add http:// if unset, assume communicating over private network - e.g. render
self.langfuse_host = "http://" + self.langfuse_host
self.langfuse_release = os.getenv("LANGFUSE_RELEASE")
self.langfuse_debug = os.getenv("LANGFUSE_DEBUG")
self.langfuse_flush_interval = LangFuseLogger._get_langfuse_flush_interval(
flush_interval
)
http_client = _get_httpx_client()
self.langfuse_client = http_client.client
parameters = {
"public_key": self.public_key,
"secret_key": self.secret_key,
"host": self.langfuse_host,
"release": self.langfuse_release,
"debug": self.langfuse_debug,
"flush_interval": self.langfuse_flush_interval, # flush interval in seconds
"httpx_client": self.langfuse_client,
}
self.langfuse_sdk_version: str = langfuse.version.__version__
if Version(self.langfuse_sdk_version) >= Version("2.6.0"):
parameters["sdk_integration"] = "litellm"
self.Langfuse = Langfuse(**parameters)
# set the current langfuse project id in the environ
# this is used by Alerting to link to the correct project
try:
project_id = self.Langfuse.client.projects.get().data[0].id
os.environ["LANGFUSE_PROJECT_ID"] = project_id
except Exception:
project_id = None
if os.getenv("UPSTREAM_LANGFUSE_SECRET_KEY") is not None:
upstream_langfuse_debug = (
str_to_bool(self.upstream_langfuse_debug)
if self.upstream_langfuse_debug is not None
else None
)
self.upstream_langfuse_secret_key = os.getenv(
"UPSTREAM_LANGFUSE_SECRET_KEY"
)
self.upstream_langfuse_public_key = os.getenv(
"UPSTREAM_LANGFUSE_PUBLIC_KEY"
)
self.upstream_langfuse_host = os.getenv("UPSTREAM_LANGFUSE_HOST")
self.upstream_langfuse_release = os.getenv("UPSTREAM_LANGFUSE_RELEASE")
self.upstream_langfuse_debug = os.getenv("UPSTREAM_LANGFUSE_DEBUG")
self.upstream_langfuse = Langfuse(
public_key=self.upstream_langfuse_public_key,
secret_key=self.upstream_langfuse_secret_key,
host=self.upstream_langfuse_host,
release=self.upstream_langfuse_release,
debug=(
upstream_langfuse_debug
if upstream_langfuse_debug is not None
else False
),
)
else:
self.upstream_langfuse = None
@staticmethod
def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict:
"""
Adds metadata from proxy request headers to Langfuse logging if keys start with "langfuse_"
and overwrites litellm_params.metadata if already included.
For example if you want to append your trace to an existing `trace_id` via header, send
`headers: { ..., langfuse_existing_trace_id: your-existing-trace-id }` via proxy request.
"""
if litellm_params is None:
return metadata
if litellm_params.get("proxy_server_request") is None:
return metadata
if metadata is None:
metadata = {}
proxy_headers = (
litellm_params.get("proxy_server_request", {}).get("headers", {}) or {}
)
for metadata_param_key in proxy_headers:
if metadata_param_key.startswith("langfuse_"):
trace_param_key = metadata_param_key.replace("langfuse_", "", 1)
if trace_param_key in metadata:
verbose_logger.warning(
f"Overwriting Langfuse `{trace_param_key}` from request header"
)
else:
verbose_logger.debug(
f"Found Langfuse `{trace_param_key}` in request header"
)
metadata[trace_param_key] = proxy_headers.get(metadata_param_key)
return metadata
def _old_log_event( # noqa: PLR0915
self,
kwargs,
response_obj,
start_time,
end_time,
user_id,
print_verbose,
level="DEFAULT",
status_message=None,
) -> dict:
# Method definition
try:
verbose_logger.debug(
f"Langfuse Logging - Enters logging function for model {kwargs}"
)
# set default values for input/output for langfuse logging
input = None
output = None
litellm_params = kwargs.get("litellm_params", {})
litellm_call_id = kwargs.get("litellm_call_id", None)
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
metadata = self.add_metadata_from_header(litellm_params, metadata)
optional_params = copy.deepcopy(kwargs.get("optional_params", {}))
prompt = {"messages": kwargs.get("messages")}
functions = optional_params.pop("functions", None)
tools = optional_params.pop("tools", None)
if functions is not None:
prompt["functions"] = functions
if tools is not None:
prompt["tools"] = tools
# langfuse only accepts str, int, bool, float for logging
for param, value in optional_params.items():
if not isinstance(value, (str, int, bool, float)):
try:
optional_params[param] = str(value)
except Exception:
# if casting value to str fails don't block logging
pass
# end of processing langfuse ########################
if (
level == "ERROR"
and status_message is not None
and isinstance(status_message, str)
):
input = prompt
output = status_message
elif response_obj is not None and (
kwargs.get("call_type", None) == "embedding"
or isinstance(response_obj, litellm.EmbeddingResponse)
):
input = prompt
output = None
elif response_obj is not None and isinstance(
response_obj, litellm.ModelResponse
):
input = prompt
output = response_obj["choices"][0]["message"].json()
elif response_obj is not None and isinstance(
response_obj, litellm.HttpxBinaryResponseContent
):
input = prompt
output = "speech-output"
elif response_obj is not None and isinstance(
response_obj, litellm.TextCompletionResponse
):
input = prompt
output = response_obj.choices[0].text
elif response_obj is not None and isinstance(
response_obj, litellm.ImageResponse
):
input = prompt
output = response_obj["data"]
elif response_obj is not None and isinstance(
response_obj, litellm.TranscriptionResponse
):
input = prompt
output = response_obj["text"]
elif response_obj is not None and isinstance(
response_obj, litellm.RerankResponse
):
input = prompt
output = response_obj.results
elif (
kwargs.get("call_type") is not None
and kwargs.get("call_type") == "_arealtime"
and response_obj is not None
and isinstance(response_obj, list)
):
input = kwargs.get("input")
output = response_obj
elif (
kwargs.get("call_type") is not None
and kwargs.get("call_type") == "pass_through_endpoint"
and response_obj is not None
and isinstance(response_obj, dict)
):
input = prompt
output = response_obj.get("response", "")
verbose_logger.debug(
f"OUTPUT IN LANGFUSE: {output}; original: {response_obj}"
)
trace_id = None
generation_id = None
if self._is_langfuse_v2():
trace_id, generation_id = self._log_langfuse_v2(
user_id,
metadata,
litellm_params,
output,
start_time,
end_time,
kwargs,
optional_params,
input,
response_obj,
level,
print_verbose,
litellm_call_id,
)
elif response_obj is not None:
self._log_langfuse_v1(
user_id,
metadata,
output,
start_time,
end_time,
kwargs,
optional_params,
input,
response_obj,
)
verbose_logger.debug(
f"Langfuse Layer Logging - final response object: {response_obj}"
)
verbose_logger.info("Langfuse Layer Logging - logging success")
return {"trace_id": trace_id, "generation_id": generation_id}
except Exception as e:
verbose_logger.exception(
"Langfuse Layer Error(): Exception occured - {}".format(str(e))
)
return {"trace_id": None, "generation_id": None}
async def _async_log_event(
self, kwargs, response_obj, start_time, end_time, user_id, print_verbose
):
"""
TODO: support async calls when langfuse is truly async
"""
def _is_langfuse_v2(self):
import langfuse
return Version(langfuse.version.__version__) >= Version("2.0.0")
def _log_langfuse_v1(
self,
user_id,
metadata,
output,
start_time,
end_time,
kwargs,
optional_params,
input,
response_obj,
):
from langfuse.model import CreateGeneration, CreateTrace # type: ignore
verbose_logger.warning(
"Please upgrade langfuse to v2.0.0 or higher: https://github.com/langfuse/langfuse-python/releases/tag/v2.0.1"
)
trace = self.Langfuse.trace( # type: ignore
CreateTrace( # type: ignore
name=metadata.get("generation_name", "litellm-completion"),
input=input,
output=output,
userId=user_id,
)
)
trace.generation(
CreateGeneration(
name=metadata.get("generation_name", "litellm-completion"),
startTime=start_time,
endTime=end_time,
model=kwargs["model"],
modelParameters=optional_params,
prompt=input,
completion=output,
usage={
"prompt_tokens": response_obj.usage.prompt_tokens,
"completion_tokens": response_obj.usage.completion_tokens,
},
metadata=metadata,
)
)
def _log_langfuse_v2( # noqa: PLR0915
self,
user_id,
metadata,
litellm_params,
output,
start_time,
end_time,
kwargs,
optional_params,
input,
response_obj,
level,
print_verbose,
litellm_call_id,
) -> tuple:
verbose_logger.debug("Langfuse Layer Logging - logging to langfuse v2")
try:
metadata = metadata or {}
standard_logging_object: Optional[StandardLoggingPayload] = cast(
Optional[StandardLoggingPayload],
kwargs.get("standard_logging_object", None),
)
tags = (
self._get_langfuse_tags(standard_logging_object=standard_logging_object)
if self._supports_tags()
else []
)
if standard_logging_object is None:
end_user_id = None
prompt_management_metadata: Optional[
StandardLoggingPromptManagementMetadata
] = None
else:
end_user_id = standard_logging_object["metadata"].get(
"user_api_key_end_user_id", None
)
prompt_management_metadata = cast(
Optional[StandardLoggingPromptManagementMetadata],
standard_logging_object["metadata"].get(
"prompt_management_metadata", None
),
)
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata: Dict[str, Any] = {}
if prompt_management_metadata is not None:
clean_metadata["prompt_management_metadata"] = (
prompt_management_metadata
)
if isinstance(metadata, dict):
for key, value in metadata.items():
# generate langfuse tags - Default Tags sent to Langfuse from LiteLLM Proxy
if (
litellm.langfuse_default_tags is not None
and isinstance(litellm.langfuse_default_tags, list)
and key in litellm.langfuse_default_tags
):
tags.append(f"{key}:{value}")
# clean litellm metadata before logging
if key in [
"headers",
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
# Add default langfuse tags
tags = self.add_default_langfuse_tags(
tags=tags, kwargs=kwargs, metadata=metadata
)
session_id = clean_metadata.pop("session_id", None)
trace_name = cast(Optional[str], clean_metadata.pop("trace_name", None))
trace_id = clean_metadata.pop("trace_id", litellm_call_id)
existing_trace_id = clean_metadata.pop("existing_trace_id", None)
update_trace_keys = cast(list, clean_metadata.pop("update_trace_keys", []))
debug = clean_metadata.pop("debug_langfuse", None)
mask_input = clean_metadata.pop("mask_input", False)
mask_output = clean_metadata.pop("mask_output", False)
clean_metadata = redact_user_api_key_info(metadata=clean_metadata)
if trace_name is None and existing_trace_id is None:
# just log `litellm-{call_type}` as the trace name
## DO NOT SET TRACE_NAME if trace-id set. this can lead to overwriting of past traces.
trace_name = f"litellm-{kwargs.get('call_type', 'completion')}"
if existing_trace_id is not None:
trace_params: Dict[str, Any] = {"id": existing_trace_id}
# Update the following keys for this trace
for metadata_param_key in update_trace_keys:
trace_param_key = metadata_param_key.replace("trace_", "")
if trace_param_key not in trace_params:
updated_trace_value = clean_metadata.pop(
metadata_param_key, None
)
if updated_trace_value is not None:
trace_params[trace_param_key] = updated_trace_value
# Pop the trace specific keys that would have been popped if there were a new trace
for key in list(
filter(lambda key: key.startswith("trace_"), clean_metadata.keys())
):
clean_metadata.pop(key, None)
# Special keys that are found in the function arguments and not the metadata
if "input" in update_trace_keys:
trace_params["input"] = (
input if not mask_input else "redacted-by-litellm"
)
if "output" in update_trace_keys:
trace_params["output"] = (
output if not mask_output else "redacted-by-litellm"
)
else: # don't overwrite an existing trace
trace_params = {
"id": trace_id,
"name": trace_name,
"session_id": session_id,
"input": input if not mask_input else "redacted-by-litellm",
"version": clean_metadata.pop(
"trace_version", clean_metadata.get("version", None)
), # If provided just version, it will applied to the trace as well, if applied a trace version it will take precedence
"user_id": end_user_id,
}
for key in list(
filter(lambda key: key.startswith("trace_"), clean_metadata.keys())
):
trace_params[key.replace("trace_", "")] = clean_metadata.pop(
key, None
)
if level == "ERROR":
trace_params["status_message"] = output
else:
trace_params["output"] = (
output if not mask_output else "redacted-by-litellm"
)
if debug is True or (isinstance(debug, str) and debug.lower() == "true"):
if "metadata" in trace_params:
# log the raw_metadata in the trace
trace_params["metadata"]["metadata_passed_to_litellm"] = metadata
else:
trace_params["metadata"] = {"metadata_passed_to_litellm": metadata}
cost = kwargs.get("response_cost", None)
verbose_logger.debug(f"trace: {cost}")
clean_metadata["litellm_response_cost"] = cost
if standard_logging_object is not None:
clean_metadata["hidden_params"] = standard_logging_object[
"hidden_params"
]
if (
litellm.langfuse_default_tags is not None
and isinstance(litellm.langfuse_default_tags, list)
and "proxy_base_url" in litellm.langfuse_default_tags
):
proxy_base_url = os.environ.get("PROXY_BASE_URL", None)
if proxy_base_url is not None:
tags.append(f"proxy_base_url:{proxy_base_url}")
api_base = litellm_params.get("api_base", None)
if api_base:
clean_metadata["api_base"] = api_base
vertex_location = kwargs.get("vertex_location", None)
if vertex_location:
clean_metadata["vertex_location"] = vertex_location
aws_region_name = kwargs.get("aws_region_name", None)
if aws_region_name:
clean_metadata["aws_region_name"] = aws_region_name
if self._supports_tags():
if "cache_hit" in kwargs:
if kwargs["cache_hit"] is None:
kwargs["cache_hit"] = False
clean_metadata["cache_hit"] = kwargs["cache_hit"]
if existing_trace_id is None:
trace_params.update({"tags": tags})
proxy_server_request = litellm_params.get("proxy_server_request", None)
if proxy_server_request:
proxy_server_request.get("method", None)
proxy_server_request.get("url", None)
headers = proxy_server_request.get("headers", None)
clean_headers = {}
if headers:
for key, value in headers.items():
# these headers can leak our API keys and/or JWT tokens
if key.lower() not in ["authorization", "cookie", "referer"]:
clean_headers[key] = value
# clean_metadata["request"] = {
# "method": method,
# "url": url,
# "headers": clean_headers,
# }
trace = self.Langfuse.trace(**trace_params)
# Log provider specific information as a span
log_provider_specific_information_as_span(trace, clean_metadata)
generation_id = None
usage = None
if response_obj is not None:
if (
hasattr(response_obj, "id")
and response_obj.get("id", None) is not None
):
generation_id = litellm.utils.get_logging_id(
start_time, response_obj
)
_usage_obj = getattr(response_obj, "usage", None)
if _usage_obj:
usage = {
"prompt_tokens": _usage_obj.prompt_tokens,
"completion_tokens": _usage_obj.completion_tokens,
"total_cost": cost if self._supports_costs() else None,
}
generation_name = clean_metadata.pop("generation_name", None)
if generation_name is None:
# if `generation_name` is None, use sensible default values
# If using litellm proxy user `key_alias` if not None
# If `key_alias` is None, just log `litellm-{call_type}` as the generation name
_user_api_key_alias = cast(
Optional[str], clean_metadata.get("user_api_key_alias", None)
)
generation_name = (
f"litellm-{cast(str, kwargs.get('call_type', 'completion'))}"
)
if _user_api_key_alias is not None:
generation_name = f"litellm:{_user_api_key_alias}"
if response_obj is not None:
system_fingerprint = getattr(response_obj, "system_fingerprint", None)
else:
system_fingerprint = None
if system_fingerprint is not None:
optional_params["system_fingerprint"] = system_fingerprint
generation_params = {
"name": generation_name,
"id": clean_metadata.pop("generation_id", generation_id),
"start_time": start_time,
"end_time": end_time,
"model": kwargs["model"],
"model_parameters": optional_params,
"input": input if not mask_input else "redacted-by-litellm",
"output": output if not mask_output else "redacted-by-litellm",
"usage": usage,
"metadata": log_requester_metadata(clean_metadata),
"level": level,
"version": clean_metadata.pop("version", None),
}
parent_observation_id = metadata.get("parent_observation_id", None)
if parent_observation_id is not None:
generation_params["parent_observation_id"] = parent_observation_id
if self._supports_prompt():
generation_params = _add_prompt_to_generation_params(
generation_params=generation_params,
clean_metadata=clean_metadata,
prompt_management_metadata=prompt_management_metadata,
langfuse_client=self.Langfuse,
)
if output is not None and isinstance(output, str) and level == "ERROR":
generation_params["status_message"] = output
if self._supports_completion_start_time():
generation_params["completion_start_time"] = kwargs.get(
"completion_start_time", None
)
generation_client = trace.generation(**generation_params)
return generation_client.trace_id, generation_id
except Exception:
verbose_logger.error(f"Langfuse Layer Error - {traceback.format_exc()}")
return None, None
@staticmethod
def _get_langfuse_tags(
standard_logging_object: Optional[StandardLoggingPayload],
) -> List[str]:
if standard_logging_object is None:
return []
return standard_logging_object.get("request_tags", []) or []
def add_default_langfuse_tags(self, tags, kwargs, metadata):
"""
Helper function to add litellm default langfuse tags
- Special LiteLLM tags:
- cache_hit
- cache_key
"""
if litellm.langfuse_default_tags is not None and isinstance(
litellm.langfuse_default_tags, list
):
if "cache_hit" in litellm.langfuse_default_tags:
_cache_hit_value = kwargs.get("cache_hit", False)
tags.append(f"cache_hit:{_cache_hit_value}")
if "cache_key" in litellm.langfuse_default_tags:
_hidden_params = metadata.get("hidden_params", {}) or {}
_cache_key = _hidden_params.get("cache_key", None)
if _cache_key is None and litellm.cache is not None:
# fallback to using "preset_cache_key"
_preset_cache_key = litellm.cache._get_preset_cache_key_from_kwargs(
**kwargs
)
_cache_key = _preset_cache_key
tags.append(f"cache_key:{_cache_key}")
return tags
def _supports_tags(self):
"""Check if current langfuse version supports tags"""
return Version(self.langfuse_sdk_version) >= Version("2.6.3")
def _supports_prompt(self):
"""Check if current langfuse version supports prompt"""
return Version(self.langfuse_sdk_version) >= Version("2.7.3")
def _supports_costs(self):
"""Check if current langfuse version supports costs"""
return Version(self.langfuse_sdk_version) >= Version("2.7.3")
def _supports_completion_start_time(self):
"""Check if current langfuse version supports completion start time"""
return Version(self.langfuse_sdk_version) >= Version("2.7.3")
@staticmethod
def _get_langfuse_flush_interval(flush_interval: int) -> int:
"""
Get the langfuse flush interval to initialize the Langfuse client
Reads `LANGFUSE_FLUSH_INTERVAL` from the environment variable.
If not set, uses the flush interval passed in as an argument.
Args:
flush_interval: The flush interval to use if LANGFUSE_FLUSH_INTERVAL is not set
Returns:
[int] The flush interval to use to initialize the Langfuse client
"""
return int(os.getenv("LANGFUSE_FLUSH_INTERVAL") or flush_interval)
def _add_prompt_to_generation_params(
generation_params: dict,
clean_metadata: dict,
prompt_management_metadata: Optional[StandardLoggingPromptManagementMetadata],
langfuse_client: Any,
) -> dict:
from langfuse import Langfuse
from langfuse.model import (
ChatPromptClient,
Prompt_Chat,
Prompt_Text,
TextPromptClient,
)
langfuse_client = cast(Langfuse, langfuse_client)
user_prompt = clean_metadata.pop("prompt", None)
if user_prompt is None and prompt_management_metadata is None:
pass
elif isinstance(user_prompt, dict):
if user_prompt.get("type", "") == "chat":
_prompt_chat = Prompt_Chat(**user_prompt)
generation_params["prompt"] = ChatPromptClient(prompt=_prompt_chat)
elif user_prompt.get("type", "") == "text":
_prompt_text = Prompt_Text(**user_prompt)
generation_params["prompt"] = TextPromptClient(prompt=_prompt_text)
elif "version" in user_prompt and "prompt" in user_prompt:
# prompts
if isinstance(user_prompt["prompt"], str):
prompt_text_params = getattr(
Prompt_Text, "model_fields", Prompt_Text.__fields__
)
_data = {
"name": user_prompt["name"],
"prompt": user_prompt["prompt"],
"version": user_prompt["version"],
"config": user_prompt.get("config", None),
}
if "labels" in prompt_text_params and "tags" in prompt_text_params:
_data["labels"] = user_prompt.get("labels", []) or []
_data["tags"] = user_prompt.get("tags", []) or []
_prompt_obj = Prompt_Text(**_data) # type: ignore
generation_params["prompt"] = TextPromptClient(prompt=_prompt_obj)
elif isinstance(user_prompt["prompt"], list):
prompt_chat_params = getattr(
Prompt_Chat, "model_fields", Prompt_Chat.__fields__
)
_data = {
"name": user_prompt["name"],
"prompt": user_prompt["prompt"],
"version": user_prompt["version"],
"config": user_prompt.get("config", None),
}
if "labels" in prompt_chat_params and "tags" in prompt_chat_params:
_data["labels"] = user_prompt.get("labels", []) or []
_data["tags"] = user_prompt.get("tags", []) or []
_prompt_obj = Prompt_Chat(**_data) # type: ignore
generation_params["prompt"] = ChatPromptClient(prompt=_prompt_obj)
else:
verbose_logger.error(
"[Non-blocking] Langfuse Logger: Invalid prompt format"
)
else:
verbose_logger.error(
"[Non-blocking] Langfuse Logger: Invalid prompt format. No prompt logged to Langfuse"
)
elif (
prompt_management_metadata is not None
and prompt_management_metadata["prompt_integration"] == "langfuse"
):
try:
generation_params["prompt"] = langfuse_client.get_prompt(
prompt_management_metadata["prompt_id"]
)
except Exception as e:
verbose_logger.debug(
f"[Non-blocking] Langfuse Logger: Error getting prompt client for logging: {e}"
)
pass
else:
generation_params["prompt"] = user_prompt
return generation_params
def log_provider_specific_information_as_span(
trace,
clean_metadata,
):
"""
Logs provider-specific information as spans.
Parameters:
trace: The tracing object used to log spans.
clean_metadata: A dictionary containing metadata to be logged.
Returns:
None
"""
_hidden_params = clean_metadata.get("hidden_params", None)
if _hidden_params is None:
return
vertex_ai_grounding_metadata = _hidden_params.get(
"vertex_ai_grounding_metadata", None
)
if vertex_ai_grounding_metadata is not None:
if isinstance(vertex_ai_grounding_metadata, list):
for elem in vertex_ai_grounding_metadata:
if isinstance(elem, dict):
for key, value in elem.items():
trace.span(
name=key,
input=value,
)
else:
trace.span(
name="vertex_ai_grounding_metadata",
input=elem,
)
else:
trace.span(
name="vertex_ai_grounding_metadata",
input=vertex_ai_grounding_metadata,
)
def log_requester_metadata(clean_metadata: dict):
returned_metadata = {}
requester_metadata = clean_metadata.get("requester_metadata") or {}
for k, v in clean_metadata.items():
if k not in requester_metadata:
returned_metadata[k] = v
returned_metadata.update({"requester_metadata": requester_metadata})
return returned_metadata
|