File size: 6,564 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""
Humanloop integration

https://humanloop.com/
"""

from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast

import httpx

import litellm
from litellm.caching import DualCache
from litellm.llms.custom_httpx.http_handler import _get_httpx_client
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import StandardCallbackDynamicParams

from .custom_logger import CustomLogger


class PromptManagementClient(TypedDict):
    prompt_id: str
    prompt_template: List[AllMessageValues]
    model: Optional[str]
    optional_params: Optional[Dict[str, Any]]


class HumanLoopPromptManager(DualCache):
    @property
    def integration_name(self):
        return "humanloop"

    def _get_prompt_from_id_cache(
        self, humanloop_prompt_id: str
    ) -> Optional[PromptManagementClient]:
        return cast(
            Optional[PromptManagementClient], self.get_cache(key=humanloop_prompt_id)
        )

    def _compile_prompt_helper(
        self, prompt_template: List[AllMessageValues], prompt_variables: Dict[str, Any]
    ) -> List[AllMessageValues]:
        """
        Helper function to compile the prompt by substituting variables in the template.

        Args:
            prompt_template: List[AllMessageValues]
            prompt_variables (dict): A dictionary of variables to substitute into the prompt template.

        Returns:
            list: A list of dictionaries with variables substituted.
        """
        compiled_prompts: List[AllMessageValues] = []

        for template in prompt_template:
            tc = template.get("content")
            if tc and isinstance(tc, str):
                formatted_template = tc.replace("{{", "{").replace("}}", "}")
                compiled_content = formatted_template.format(**prompt_variables)
                template["content"] = compiled_content
            compiled_prompts.append(template)

        return compiled_prompts

    def _get_prompt_from_id_api(
        self, humanloop_prompt_id: str, humanloop_api_key: str
    ) -> PromptManagementClient:
        client = _get_httpx_client()

        base_url = "https://api.humanloop.com/v5/prompts/{}".format(humanloop_prompt_id)

        response = client.get(
            url=base_url,
            headers={
                "X-Api-Key": humanloop_api_key,
                "Content-Type": "application/json",
            },
        )

        try:
            response.raise_for_status()
        except httpx.HTTPStatusError as e:
            raise Exception(f"Error getting prompt from Humanloop: {e.response.text}")

        json_response = response.json()
        template_message = json_response["template"]
        if isinstance(template_message, dict):
            template_messages = [template_message]
        elif isinstance(template_message, list):
            template_messages = template_message
        else:
            raise ValueError(f"Invalid template message type: {type(template_message)}")
        template_model = json_response["model"]
        optional_params = {}
        for k, v in json_response.items():
            if k in litellm.OPENAI_CHAT_COMPLETION_PARAMS:
                optional_params[k] = v
        return PromptManagementClient(
            prompt_id=humanloop_prompt_id,
            prompt_template=cast(List[AllMessageValues], template_messages),
            model=template_model,
            optional_params=optional_params,
        )

    def _get_prompt_from_id(
        self, humanloop_prompt_id: str, humanloop_api_key: str
    ) -> PromptManagementClient:
        prompt = self._get_prompt_from_id_cache(humanloop_prompt_id)
        if prompt is None:
            prompt = self._get_prompt_from_id_api(
                humanloop_prompt_id, humanloop_api_key
            )
            self.set_cache(
                key=humanloop_prompt_id,
                value=prompt,
                ttl=litellm.HUMANLOOP_PROMPT_CACHE_TTL_SECONDS,
            )
        return prompt

    def compile_prompt(
        self,
        prompt_template: List[AllMessageValues],
        prompt_variables: Optional[dict],
    ) -> List[AllMessageValues]:
        compiled_prompt: Optional[Union[str, list]] = None

        if prompt_variables is None:
            prompt_variables = {}

        compiled_prompt = self._compile_prompt_helper(
            prompt_template=prompt_template,
            prompt_variables=prompt_variables,
        )

        return compiled_prompt

    def _get_model_from_prompt(
        self, prompt_management_client: PromptManagementClient, model: str
    ) -> str:
        if prompt_management_client["model"] is not None:
            return prompt_management_client["model"]
        else:
            return model.replace("{}/".format(self.integration_name), "")


prompt_manager = HumanLoopPromptManager()


class HumanloopLogger(CustomLogger):
    def get_chat_completion_prompt(
        self,
        model: str,
        messages: List[AllMessageValues],
        non_default_params: dict,
        prompt_id: str,
        prompt_variables: Optional[dict],
        dynamic_callback_params: StandardCallbackDynamicParams,
    ) -> Tuple[
        str,
        List[AllMessageValues],
        dict,
    ]:
        humanloop_api_key = dynamic_callback_params.get(
            "humanloop_api_key"
        ) or get_secret_str("HUMANLOOP_API_KEY")

        if humanloop_api_key is None:
            return super().get_chat_completion_prompt(
                model=model,
                messages=messages,
                non_default_params=non_default_params,
                prompt_id=prompt_id,
                prompt_variables=prompt_variables,
                dynamic_callback_params=dynamic_callback_params,
            )

        prompt_template = prompt_manager._get_prompt_from_id(
            humanloop_prompt_id=prompt_id, humanloop_api_key=humanloop_api_key
        )

        updated_messages = prompt_manager.compile_prompt(
            prompt_template=prompt_template["prompt_template"],
            prompt_variables=prompt_variables,
        )

        prompt_template_optional_params = prompt_template["optional_params"] or {}

        updated_non_default_params = {
            **non_default_params,
            **prompt_template_optional_params,
        }

        model = prompt_manager._get_model_from_prompt(
            prompt_management_client=prompt_template, model=model
        )

        return model, updated_messages, updated_non_default_params