File size: 6,564 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
"""
Humanloop integration
https://humanloop.com/
"""
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast
import httpx
import litellm
from litellm.caching import DualCache
from litellm.llms.custom_httpx.http_handler import _get_httpx_client
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import StandardCallbackDynamicParams
from .custom_logger import CustomLogger
class PromptManagementClient(TypedDict):
prompt_id: str
prompt_template: List[AllMessageValues]
model: Optional[str]
optional_params: Optional[Dict[str, Any]]
class HumanLoopPromptManager(DualCache):
@property
def integration_name(self):
return "humanloop"
def _get_prompt_from_id_cache(
self, humanloop_prompt_id: str
) -> Optional[PromptManagementClient]:
return cast(
Optional[PromptManagementClient], self.get_cache(key=humanloop_prompt_id)
)
def _compile_prompt_helper(
self, prompt_template: List[AllMessageValues], prompt_variables: Dict[str, Any]
) -> List[AllMessageValues]:
"""
Helper function to compile the prompt by substituting variables in the template.
Args:
prompt_template: List[AllMessageValues]
prompt_variables (dict): A dictionary of variables to substitute into the prompt template.
Returns:
list: A list of dictionaries with variables substituted.
"""
compiled_prompts: List[AllMessageValues] = []
for template in prompt_template:
tc = template.get("content")
if tc and isinstance(tc, str):
formatted_template = tc.replace("{{", "{").replace("}}", "}")
compiled_content = formatted_template.format(**prompt_variables)
template["content"] = compiled_content
compiled_prompts.append(template)
return compiled_prompts
def _get_prompt_from_id_api(
self, humanloop_prompt_id: str, humanloop_api_key: str
) -> PromptManagementClient:
client = _get_httpx_client()
base_url = "https://api.humanloop.com/v5/prompts/{}".format(humanloop_prompt_id)
response = client.get(
url=base_url,
headers={
"X-Api-Key": humanloop_api_key,
"Content-Type": "application/json",
},
)
try:
response.raise_for_status()
except httpx.HTTPStatusError as e:
raise Exception(f"Error getting prompt from Humanloop: {e.response.text}")
json_response = response.json()
template_message = json_response["template"]
if isinstance(template_message, dict):
template_messages = [template_message]
elif isinstance(template_message, list):
template_messages = template_message
else:
raise ValueError(f"Invalid template message type: {type(template_message)}")
template_model = json_response["model"]
optional_params = {}
for k, v in json_response.items():
if k in litellm.OPENAI_CHAT_COMPLETION_PARAMS:
optional_params[k] = v
return PromptManagementClient(
prompt_id=humanloop_prompt_id,
prompt_template=cast(List[AllMessageValues], template_messages),
model=template_model,
optional_params=optional_params,
)
def _get_prompt_from_id(
self, humanloop_prompt_id: str, humanloop_api_key: str
) -> PromptManagementClient:
prompt = self._get_prompt_from_id_cache(humanloop_prompt_id)
if prompt is None:
prompt = self._get_prompt_from_id_api(
humanloop_prompt_id, humanloop_api_key
)
self.set_cache(
key=humanloop_prompt_id,
value=prompt,
ttl=litellm.HUMANLOOP_PROMPT_CACHE_TTL_SECONDS,
)
return prompt
def compile_prompt(
self,
prompt_template: List[AllMessageValues],
prompt_variables: Optional[dict],
) -> List[AllMessageValues]:
compiled_prompt: Optional[Union[str, list]] = None
if prompt_variables is None:
prompt_variables = {}
compiled_prompt = self._compile_prompt_helper(
prompt_template=prompt_template,
prompt_variables=prompt_variables,
)
return compiled_prompt
def _get_model_from_prompt(
self, prompt_management_client: PromptManagementClient, model: str
) -> str:
if prompt_management_client["model"] is not None:
return prompt_management_client["model"]
else:
return model.replace("{}/".format(self.integration_name), "")
prompt_manager = HumanLoopPromptManager()
class HumanloopLogger(CustomLogger):
def get_chat_completion_prompt(
self,
model: str,
messages: List[AllMessageValues],
non_default_params: dict,
prompt_id: str,
prompt_variables: Optional[dict],
dynamic_callback_params: StandardCallbackDynamicParams,
) -> Tuple[
str,
List[AllMessageValues],
dict,
]:
humanloop_api_key = dynamic_callback_params.get(
"humanloop_api_key"
) or get_secret_str("HUMANLOOP_API_KEY")
if humanloop_api_key is None:
return super().get_chat_completion_prompt(
model=model,
messages=messages,
non_default_params=non_default_params,
prompt_id=prompt_id,
prompt_variables=prompt_variables,
dynamic_callback_params=dynamic_callback_params,
)
prompt_template = prompt_manager._get_prompt_from_id(
humanloop_prompt_id=prompt_id, humanloop_api_key=humanloop_api_key
)
updated_messages = prompt_manager.compile_prompt(
prompt_template=prompt_template["prompt_template"],
prompt_variables=prompt_variables,
)
prompt_template_optional_params = prompt_template["optional_params"] or {}
updated_non_default_params = {
**non_default_params,
**prompt_template_optional_params,
}
model = prompt_manager._get_model_from_prompt(
prompt_management_client=prompt_template, model=model
)
return model, updated_messages, updated_non_default_params
|