File size: 6,506 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
"""
BETA
This is the PubSub logger for GCS PubSub, this sends LiteLLM SpendLogs Payloads to GCS PubSub.
Users can use this instead of sending their SpendLogs to their Postgres database.
"""
import asyncio
import json
import os
import traceback
from typing import TYPE_CHECKING, Any, Dict, List, Optional
if TYPE_CHECKING:
from litellm.proxy._types import SpendLogsPayload
else:
SpendLogsPayload = Any
from litellm._logging import verbose_logger
from litellm.integrations.custom_batch_logger import CustomBatchLogger
from litellm.llms.custom_httpx.http_handler import (
get_async_httpx_client,
httpxSpecialProvider,
)
class GcsPubSubLogger(CustomBatchLogger):
def __init__(
self,
project_id: Optional[str] = None,
topic_id: Optional[str] = None,
credentials_path: Optional[str] = None,
**kwargs,
):
"""
Initialize Google Cloud Pub/Sub publisher
Args:
project_id (str): Google Cloud project ID
topic_id (str): Pub/Sub topic ID
credentials_path (str, optional): Path to Google Cloud credentials JSON file
"""
from litellm.proxy.utils import _premium_user_check
_premium_user_check()
self.async_httpx_client = get_async_httpx_client(
llm_provider=httpxSpecialProvider.LoggingCallback
)
self.project_id = project_id or os.getenv("GCS_PUBSUB_PROJECT_ID")
self.topic_id = topic_id or os.getenv("GCS_PUBSUB_TOPIC_ID")
self.path_service_account_json = credentials_path or os.getenv(
"GCS_PATH_SERVICE_ACCOUNT"
)
if not self.project_id or not self.topic_id:
raise ValueError("Both project_id and topic_id must be provided")
self.flush_lock = asyncio.Lock()
super().__init__(**kwargs, flush_lock=self.flush_lock)
asyncio.create_task(self.periodic_flush())
self.log_queue: List[SpendLogsPayload] = []
async def construct_request_headers(self) -> Dict[str, str]:
"""Construct authorization headers using Vertex AI auth"""
from litellm import vertex_chat_completion
_auth_header, vertex_project = (
await vertex_chat_completion._ensure_access_token_async(
credentials=self.path_service_account_json,
project_id=None,
custom_llm_provider="vertex_ai",
)
)
auth_header, _ = vertex_chat_completion._get_token_and_url(
model="pub-sub",
auth_header=_auth_header,
vertex_credentials=self.path_service_account_json,
vertex_project=vertex_project,
vertex_location=None,
gemini_api_key=None,
stream=None,
custom_llm_provider="vertex_ai",
api_base=None,
)
headers = {
"Authorization": f"Bearer {auth_header}",
"Content-Type": "application/json",
}
return headers
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
"""
Async Log success events to GCS PubSub Topic
- Creates a SpendLogsPayload
- Adds to batch queue
- Flushes based on CustomBatchLogger settings
Raises:
Raises a NON Blocking verbose_logger.exception if an error occurs
"""
from litellm.proxy.spend_tracking.spend_tracking_utils import (
get_logging_payload,
)
from litellm.proxy.utils import _premium_user_check
_premium_user_check()
try:
verbose_logger.debug(
"PubSub: Logging - Enters logging function for model %s", kwargs
)
spend_logs_payload = get_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
self.log_queue.append(spend_logs_payload)
if len(self.log_queue) >= self.batch_size:
await self.async_send_batch()
except Exception as e:
verbose_logger.exception(
f"PubSub Layer Error - {str(e)}\n{traceback.format_exc()}"
)
pass
async def async_send_batch(self):
"""
Sends the batch of messages to Pub/Sub
"""
try:
if not self.log_queue:
return
verbose_logger.debug(
f"PubSub - about to flush {len(self.log_queue)} events"
)
for message in self.log_queue:
await self.publish_message(message)
except Exception as e:
verbose_logger.exception(
f"PubSub Error sending batch - {str(e)}\n{traceback.format_exc()}"
)
finally:
self.log_queue.clear()
async def publish_message(
self, message: SpendLogsPayload
) -> Optional[Dict[str, Any]]:
"""
Publish message to Google Cloud Pub/Sub using REST API
Args:
message: Message to publish (dict or string)
Returns:
dict: Published message response
"""
try:
headers = await self.construct_request_headers()
# Prepare message data
if isinstance(message, str):
message_data = message
else:
message_data = json.dumps(message, default=str)
# Base64 encode the message
import base64
encoded_message = base64.b64encode(message_data.encode("utf-8")).decode(
"utf-8"
)
# Construct request body
request_body = {"messages": [{"data": encoded_message}]}
url = f"https://pubsub.googleapis.com/v1/projects/{self.project_id}/topics/{self.topic_id}:publish"
response = await self.async_httpx_client.post(
url=url, headers=headers, json=request_body
)
if response.status_code not in [200, 202]:
verbose_logger.error("Pub/Sub publish error: %s", str(response.text))
raise Exception(f"Failed to publish message: {response.text}")
verbose_logger.debug("Pub/Sub response: %s", response.text)
return response.json()
except Exception as e:
verbose_logger.error("Pub/Sub publish error: %s", str(e))
return None
|