File size: 12,602 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
#### What this does ####
# On success, logs events to Promptlayer
import traceback
from typing import TYPE_CHECKING, Any, List, Literal, Optional, Tuple, Union
from pydantic import BaseModel
from litellm.caching.caching import DualCache
from litellm.proxy._types import UserAPIKeyAuth
from litellm.types.integrations.argilla import ArgillaItem
from litellm.types.llms.openai import AllMessageValues, ChatCompletionRequest
from litellm.types.utils import (
AdapterCompletionStreamWrapper,
EmbeddingResponse,
ImageResponse,
ModelResponse,
StandardCallbackDynamicParams,
StandardLoggingPayload,
)
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
Span = _Span
else:
Span = Any
class CustomLogger: # https://docs.litellm.ai/docs/observability/custom_callback#callback-class
# Class variables or attributes
def __init__(self, message_logging: bool = True) -> None:
self.message_logging = message_logging
pass
def log_pre_api_call(self, model, messages, kwargs):
pass
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
pass
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
pass
def log_success_event(self, kwargs, response_obj, start_time, end_time):
pass
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
pass
#### ASYNC ####
async def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
pass
async def async_log_pre_api_call(self, model, messages, kwargs):
pass
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
pass
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
pass
#### PROMPT MANAGEMENT HOOKS ####
async def async_get_chat_completion_prompt(
self,
model: str,
messages: List[AllMessageValues],
non_default_params: dict,
prompt_id: str,
prompt_variables: Optional[dict],
dynamic_callback_params: StandardCallbackDynamicParams,
) -> Tuple[str, List[AllMessageValues], dict]:
"""
Returns:
- model: str - the model to use (can be pulled from prompt management tool)
- messages: List[AllMessageValues] - the messages to use (can be pulled from prompt management tool)
- non_default_params: dict - update with any optional params (e.g. temperature, max_tokens, etc.) to use (can be pulled from prompt management tool)
"""
return model, messages, non_default_params
def get_chat_completion_prompt(
self,
model: str,
messages: List[AllMessageValues],
non_default_params: dict,
prompt_id: str,
prompt_variables: Optional[dict],
dynamic_callback_params: StandardCallbackDynamicParams,
) -> Tuple[str, List[AllMessageValues], dict]:
"""
Returns:
- model: str - the model to use (can be pulled from prompt management tool)
- messages: List[AllMessageValues] - the messages to use (can be pulled from prompt management tool)
- non_default_params: dict - update with any optional params (e.g. temperature, max_tokens, etc.) to use (can be pulled from prompt management tool)
"""
return model, messages, non_default_params
#### PRE-CALL CHECKS - router/proxy only ####
"""
Allows usage-based-routing-v2 to run pre-call rpm checks within the picked deployment's semaphore (concurrency-safe tpm/rpm checks).
"""
async def async_filter_deployments(
self,
model: str,
healthy_deployments: List,
messages: Optional[List[AllMessageValues]],
request_kwargs: Optional[dict] = None,
parent_otel_span: Optional[Span] = None,
) -> List[dict]:
return healthy_deployments
async def async_pre_call_check(
self, deployment: dict, parent_otel_span: Optional[Span]
) -> Optional[dict]:
pass
def pre_call_check(self, deployment: dict) -> Optional[dict]:
pass
#### Fallback Events - router/proxy only ####
async def log_model_group_rate_limit_error(
self, exception: Exception, original_model_group: Optional[str], kwargs: dict
):
pass
async def log_success_fallback_event(
self, original_model_group: str, kwargs: dict, original_exception: Exception
):
pass
async def log_failure_fallback_event(
self, original_model_group: str, kwargs: dict, original_exception: Exception
):
pass
#### ADAPTERS #### Allow calling 100+ LLMs in custom format - https://github.com/BerriAI/litellm/pulls
def translate_completion_input_params(
self, kwargs
) -> Optional[ChatCompletionRequest]:
"""
Translates the input params, from the provider's native format to the litellm.completion() format.
"""
pass
def translate_completion_output_params(
self, response: ModelResponse
) -> Optional[BaseModel]:
"""
Translates the output params, from the OpenAI format to the custom format.
"""
pass
def translate_completion_output_params_streaming(
self, completion_stream: Any
) -> Optional[AdapterCompletionStreamWrapper]:
"""
Translates the streaming chunk, from the OpenAI format to the custom format.
"""
pass
### DATASET HOOKS #### - currently only used for Argilla
async def async_dataset_hook(
self,
logged_item: ArgillaItem,
standard_logging_payload: Optional[StandardLoggingPayload],
) -> Optional[ArgillaItem]:
"""
- Decide if the result should be logged to Argilla.
- Modify the result before logging to Argilla.
- Return None if the result should not be logged to Argilla.
"""
raise NotImplementedError("async_dataset_hook not implemented")
#### CALL HOOKS - proxy only ####
"""
Control the modify incoming / outgoung data before calling the model
"""
async def async_pre_call_hook(
self,
user_api_key_dict: UserAPIKeyAuth,
cache: DualCache,
data: dict,
call_type: Literal[
"completion",
"text_completion",
"embeddings",
"image_generation",
"moderation",
"audio_transcription",
"pass_through_endpoint",
"rerank",
],
) -> Optional[
Union[Exception, str, dict]
]: # raise exception if invalid, return a str for the user to receive - if rejected, or return a modified dictionary for passing into litellm
pass
async def async_post_call_failure_hook(
self,
request_data: dict,
original_exception: Exception,
user_api_key_dict: UserAPIKeyAuth,
):
pass
async def async_post_call_success_hook(
self,
data: dict,
user_api_key_dict: UserAPIKeyAuth,
response: Union[Any, ModelResponse, EmbeddingResponse, ImageResponse],
) -> Any:
pass
async def async_logging_hook(
self, kwargs: dict, result: Any, call_type: str
) -> Tuple[dict, Any]:
"""For masking logged request/response. Return a modified version of the request/result."""
return kwargs, result
def logging_hook(
self, kwargs: dict, result: Any, call_type: str
) -> Tuple[dict, Any]:
"""For masking logged request/response. Return a modified version of the request/result."""
return kwargs, result
async def async_moderation_hook(
self,
data: dict,
user_api_key_dict: UserAPIKeyAuth,
call_type: Literal[
"completion",
"embeddings",
"image_generation",
"moderation",
"audio_transcription",
],
) -> Any:
pass
async def async_post_call_streaming_hook(
self,
user_api_key_dict: UserAPIKeyAuth,
response: str,
) -> Any:
pass
#### SINGLE-USE #### - https://docs.litellm.ai/docs/observability/custom_callback#using-your-custom-callback-function
def log_input_event(self, model, messages, kwargs, print_verbose, callback_func):
try:
kwargs["model"] = model
kwargs["messages"] = messages
kwargs["log_event_type"] = "pre_api_call"
callback_func(
kwargs,
)
print_verbose(f"Custom Logger - model call details: {kwargs}")
except Exception:
print_verbose(f"Custom Logger Error - {traceback.format_exc()}")
async def async_log_input_event(
self, model, messages, kwargs, print_verbose, callback_func
):
try:
kwargs["model"] = model
kwargs["messages"] = messages
kwargs["log_event_type"] = "pre_api_call"
await callback_func(
kwargs,
)
print_verbose(f"Custom Logger - model call details: {kwargs}")
except Exception:
print_verbose(f"Custom Logger Error - {traceback.format_exc()}")
def log_event(
self, kwargs, response_obj, start_time, end_time, print_verbose, callback_func
):
# Method definition
try:
kwargs["log_event_type"] = "post_api_call"
callback_func(
kwargs, # kwargs to func
response_obj,
start_time,
end_time,
)
except Exception:
print_verbose(f"Custom Logger Error - {traceback.format_exc()}")
pass
async def async_log_event(
self, kwargs, response_obj, start_time, end_time, print_verbose, callback_func
):
# Method definition
try:
kwargs["log_event_type"] = "post_api_call"
await callback_func(
kwargs, # kwargs to func
response_obj,
start_time,
end_time,
)
except Exception:
print_verbose(f"Custom Logger Error - {traceback.format_exc()}")
pass
# Useful helpers for custom logger classes
def truncate_standard_logging_payload_content(
self,
standard_logging_object: StandardLoggingPayload,
):
"""
Truncate error strings and message content in logging payload
Some loggers like DataDog/ GCS Bucket have a limit on the size of the payload. (1MB)
This function truncates the error string and the message content if they exceed a certain length.
"""
MAX_STR_LENGTH = 10_000
# Truncate fields that might exceed max length
fields_to_truncate = ["error_str", "messages", "response"]
for field in fields_to_truncate:
self._truncate_field(
standard_logging_object=standard_logging_object,
field_name=field,
max_length=MAX_STR_LENGTH,
)
def _truncate_field(
self,
standard_logging_object: StandardLoggingPayload,
field_name: str,
max_length: int,
) -> None:
"""
Helper function to truncate a field in the logging payload
This converts the field to a string and then truncates it if it exceeds the max length.
Why convert to string ?
1. User was sending a poorly formatted list for `messages` field, we could not predict where they would send content
- Converting to string and then truncating the logged content catches this
2. We want to avoid modifying the original `messages`, `response`, and `error_str` in the logging payload since these are in kwargs and could be returned to the user
"""
field_value = standard_logging_object.get(field_name) # type: ignore
if field_value:
str_value = str(field_value)
if len(str_value) > max_length:
standard_logging_object[field_name] = self._truncate_text( # type: ignore
text=str_value, max_length=max_length
)
def _truncate_text(self, text: str, max_length: int) -> str:
"""Truncate text if it exceeds max_length"""
return (
text[:max_length]
+ "...truncated by litellm, this logger does not support large content"
if len(text) > max_length
else text
)
|