File size: 8,036 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
"""
arize AI is OTEL compatible
this file has Arize ai specific helper functions
"""
import json
from typing import TYPE_CHECKING, Any, Optional
from litellm._logging import verbose_logger
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
from .opentelemetry import OpenTelemetryConfig as _OpenTelemetryConfig
Span = _Span
OpenTelemetryConfig = _OpenTelemetryConfig
else:
Span = Any
OpenTelemetryConfig = Any
import os
from litellm.types.integrations.arize import *
class ArizeLogger:
@staticmethod
def set_arize_ai_attributes(span: Span, kwargs, response_obj):
from litellm.integrations._types.open_inference import (
MessageAttributes,
OpenInferenceSpanKindValues,
SpanAttributes,
)
try:
optional_params = kwargs.get("optional_params", {})
# litellm_params = kwargs.get("litellm_params", {}) or {}
#############################################
############ LLM CALL METADATA ##############
#############################################
# commented out for now - looks like Arize AI could not log this
# metadata = litellm_params.get("metadata", {}) or {}
# span.set_attribute(SpanAttributes.METADATA, str(metadata))
#############################################
########## LLM Request Attributes ###########
#############################################
# The name of the LLM a request is being made to
if kwargs.get("model"):
span.set_attribute(SpanAttributes.LLM_MODEL_NAME, kwargs.get("model"))
span.set_attribute(
SpanAttributes.OPENINFERENCE_SPAN_KIND,
OpenInferenceSpanKindValues.LLM.value,
)
messages = kwargs.get("messages")
# for /chat/completions
# https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
if messages:
span.set_attribute(
SpanAttributes.INPUT_VALUE,
messages[-1].get("content", ""), # get the last message for input
)
# LLM_INPUT_MESSAGES shows up under `input_messages` tab on the span page
for idx, msg in enumerate(messages):
# Set the role per message
span.set_attribute(
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_ROLE}",
msg["role"],
)
# Set the content per message
span.set_attribute(
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_CONTENT}",
msg.get("content", ""),
)
# The Generative AI Provider: Azure, OpenAI, etc.
_optional_params = ArizeLogger.make_json_serializable(optional_params)
_json_optional_params = json.dumps(_optional_params)
span.set_attribute(
SpanAttributes.LLM_INVOCATION_PARAMETERS, _json_optional_params
)
if optional_params.get("user"):
span.set_attribute(SpanAttributes.USER_ID, optional_params.get("user"))
#############################################
########## LLM Response Attributes ##########
# https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
#############################################
for choice in response_obj.get("choices"):
response_message = choice.get("message", {})
span.set_attribute(
SpanAttributes.OUTPUT_VALUE, response_message.get("content", "")
)
# This shows up under `output_messages` tab on the span page
# This code assumes a single response
span.set_attribute(
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}",
response_message["role"],
)
span.set_attribute(
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}",
response_message.get("content", ""),
)
usage = response_obj.get("usage")
if usage:
span.set_attribute(
SpanAttributes.LLM_TOKEN_COUNT_TOTAL,
usage.get("total_tokens"),
)
# The number of tokens used in the LLM response (completion).
span.set_attribute(
SpanAttributes.LLM_TOKEN_COUNT_COMPLETION,
usage.get("completion_tokens"),
)
# The number of tokens used in the LLM prompt.
span.set_attribute(
SpanAttributes.LLM_TOKEN_COUNT_PROMPT,
usage.get("prompt_tokens"),
)
pass
except Exception as e:
verbose_logger.error(f"Error setting arize attributes: {e}")
###################### Helper functions ######################
@staticmethod
def _get_arize_config() -> ArizeConfig:
"""
Helper function to get Arize configuration.
Returns:
ArizeConfig: A Pydantic model containing Arize configuration.
Raises:
ValueError: If required environment variables are not set.
"""
space_key = os.environ.get("ARIZE_SPACE_KEY")
api_key = os.environ.get("ARIZE_API_KEY")
if not space_key:
raise ValueError("ARIZE_SPACE_KEY not found in environment variables")
if not api_key:
raise ValueError("ARIZE_API_KEY not found in environment variables")
grpc_endpoint = os.environ.get("ARIZE_ENDPOINT")
http_endpoint = os.environ.get("ARIZE_HTTP_ENDPOINT")
if grpc_endpoint is None and http_endpoint is None:
# use default arize grpc endpoint
verbose_logger.debug(
"No ARIZE_ENDPOINT or ARIZE_HTTP_ENDPOINT found, using default endpoint: https://otlp.arize.com/v1"
)
grpc_endpoint = "https://otlp.arize.com/v1"
return ArizeConfig(
space_key=space_key,
api_key=api_key,
grpc_endpoint=grpc_endpoint,
http_endpoint=http_endpoint,
)
@staticmethod
def get_arize_opentelemetry_config() -> Optional[OpenTelemetryConfig]:
"""
Helper function to get OpenTelemetry configuration for Arize.
Args:
arize_config (ArizeConfig): Arize configuration object.
Returns:
OpenTelemetryConfig: Configuration for OpenTelemetry.
"""
from .opentelemetry import OpenTelemetryConfig
arize_config = ArizeLogger._get_arize_config()
if arize_config.http_endpoint:
return OpenTelemetryConfig(
exporter="otlp_http",
endpoint=arize_config.http_endpoint,
)
# use default arize grpc endpoint
return OpenTelemetryConfig(
exporter="otlp_grpc",
endpoint=arize_config.grpc_endpoint,
)
@staticmethod
def make_json_serializable(payload: dict) -> dict:
for key, value in payload.items():
try:
if isinstance(value, dict):
# recursively sanitize dicts
payload[key] = ArizeLogger.make_json_serializable(value.copy())
elif not isinstance(value, (str, int, float, bool, type(None))):
# everything else becomes a string
payload[key] = str(value)
except Exception:
# non blocking if it can't cast to a str
pass
return payload
|