File size: 8,036 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
arize AI is OTEL compatible

this file has Arize ai specific helper functions
"""

import json
from typing import TYPE_CHECKING, Any, Optional

from litellm._logging import verbose_logger

if TYPE_CHECKING:
    from opentelemetry.trace import Span as _Span

    from .opentelemetry import OpenTelemetryConfig as _OpenTelemetryConfig

    Span = _Span
    OpenTelemetryConfig = _OpenTelemetryConfig
else:
    Span = Any
    OpenTelemetryConfig = Any

import os

from litellm.types.integrations.arize import *


class ArizeLogger:
    @staticmethod
    def set_arize_ai_attributes(span: Span, kwargs, response_obj):
        from litellm.integrations._types.open_inference import (
            MessageAttributes,
            OpenInferenceSpanKindValues,
            SpanAttributes,
        )

        try:

            optional_params = kwargs.get("optional_params", {})
            # litellm_params = kwargs.get("litellm_params", {}) or {}

            #############################################
            ############ LLM CALL METADATA ##############
            #############################################
            # commented out for now - looks like Arize AI could not log this
            # metadata = litellm_params.get("metadata", {}) or {}
            # span.set_attribute(SpanAttributes.METADATA, str(metadata))

            #############################################
            ########## LLM Request Attributes ###########
            #############################################

            # The name of the LLM a request is being made to
            if kwargs.get("model"):
                span.set_attribute(SpanAttributes.LLM_MODEL_NAME, kwargs.get("model"))

            span.set_attribute(
                SpanAttributes.OPENINFERENCE_SPAN_KIND,
                OpenInferenceSpanKindValues.LLM.value,
            )
            messages = kwargs.get("messages")

            # for /chat/completions
            # https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
            if messages:
                span.set_attribute(
                    SpanAttributes.INPUT_VALUE,
                    messages[-1].get("content", ""),  # get the last message for input
                )

                # LLM_INPUT_MESSAGES shows up under `input_messages` tab on the span page
                for idx, msg in enumerate(messages):
                    # Set the role per message
                    span.set_attribute(
                        f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_ROLE}",
                        msg["role"],
                    )
                    # Set the content per message
                    span.set_attribute(
                        f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_CONTENT}",
                        msg.get("content", ""),
                    )

            # The Generative AI Provider: Azure, OpenAI, etc.
            _optional_params = ArizeLogger.make_json_serializable(optional_params)
            _json_optional_params = json.dumps(_optional_params)
            span.set_attribute(
                SpanAttributes.LLM_INVOCATION_PARAMETERS, _json_optional_params
            )

            if optional_params.get("user"):
                span.set_attribute(SpanAttributes.USER_ID, optional_params.get("user"))

            #############################################
            ########## LLM Response Attributes ##########
            # https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
            #############################################
            for choice in response_obj.get("choices"):
                response_message = choice.get("message", {})
                span.set_attribute(
                    SpanAttributes.OUTPUT_VALUE, response_message.get("content", "")
                )

                # This shows up under `output_messages` tab on the span page
                # This code assumes a single response
                span.set_attribute(
                    f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}",
                    response_message["role"],
                )
                span.set_attribute(
                    f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}",
                    response_message.get("content", ""),
                )

            usage = response_obj.get("usage")
            if usage:
                span.set_attribute(
                    SpanAttributes.LLM_TOKEN_COUNT_TOTAL,
                    usage.get("total_tokens"),
                )

                # The number of tokens used in the LLM response (completion).
                span.set_attribute(
                    SpanAttributes.LLM_TOKEN_COUNT_COMPLETION,
                    usage.get("completion_tokens"),
                )

                # The number of tokens used in the LLM prompt.
                span.set_attribute(
                    SpanAttributes.LLM_TOKEN_COUNT_PROMPT,
                    usage.get("prompt_tokens"),
                )
            pass
        except Exception as e:
            verbose_logger.error(f"Error setting arize attributes: {e}")

    ###################### Helper functions ######################

    @staticmethod
    def _get_arize_config() -> ArizeConfig:
        """
        Helper function to get Arize configuration.

        Returns:
            ArizeConfig: A Pydantic model containing Arize configuration.

        Raises:
            ValueError: If required environment variables are not set.
        """
        space_key = os.environ.get("ARIZE_SPACE_KEY")
        api_key = os.environ.get("ARIZE_API_KEY")

        if not space_key:
            raise ValueError("ARIZE_SPACE_KEY not found in environment variables")
        if not api_key:
            raise ValueError("ARIZE_API_KEY not found in environment variables")

        grpc_endpoint = os.environ.get("ARIZE_ENDPOINT")
        http_endpoint = os.environ.get("ARIZE_HTTP_ENDPOINT")
        if grpc_endpoint is None and http_endpoint is None:
            # use default arize grpc endpoint
            verbose_logger.debug(
                "No ARIZE_ENDPOINT or ARIZE_HTTP_ENDPOINT found, using default endpoint: https://otlp.arize.com/v1"
            )
            grpc_endpoint = "https://otlp.arize.com/v1"

        return ArizeConfig(
            space_key=space_key,
            api_key=api_key,
            grpc_endpoint=grpc_endpoint,
            http_endpoint=http_endpoint,
        )

    @staticmethod
    def get_arize_opentelemetry_config() -> Optional[OpenTelemetryConfig]:
        """
        Helper function to get OpenTelemetry configuration for Arize.

        Args:
            arize_config (ArizeConfig): Arize configuration object.

        Returns:
            OpenTelemetryConfig: Configuration for OpenTelemetry.
        """
        from .opentelemetry import OpenTelemetryConfig

        arize_config = ArizeLogger._get_arize_config()
        if arize_config.http_endpoint:
            return OpenTelemetryConfig(
                exporter="otlp_http",
                endpoint=arize_config.http_endpoint,
            )

        # use default arize grpc endpoint
        return OpenTelemetryConfig(
            exporter="otlp_grpc",
            endpoint=arize_config.grpc_endpoint,
        )

    @staticmethod
    def make_json_serializable(payload: dict) -> dict:
        for key, value in payload.items():
            try:
                if isinstance(value, dict):
                    # recursively sanitize dicts
                    payload[key] = ArizeLogger.make_json_serializable(value.copy())
                elif not isinstance(value, (str, int, float, bool, type(None))):
                    # everything else becomes a string
                    payload[key] = str(value)
            except Exception:
                # non blocking if it can't cast to a str
                pass
        return payload