File size: 14,290 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
"""
Send logs to Argilla for annotation
"""

import asyncio
import json
import os
import random
import types
from typing import Any, Dict, List, Optional

import httpx
from pydantic import BaseModel  # type: ignore

import litellm
from litellm._logging import verbose_logger
from litellm.integrations.custom_batch_logger import CustomBatchLogger
from litellm.integrations.custom_logger import CustomLogger
from litellm.llms.custom_httpx.http_handler import (
    get_async_httpx_client,
    httpxSpecialProvider,
)
from litellm.types.integrations.argilla import (
    SUPPORTED_PAYLOAD_FIELDS,
    ArgillaCredentialsObject,
    ArgillaItem,
)
from litellm.types.utils import StandardLoggingPayload


def is_serializable(value):
    non_serializable_types = (
        types.CoroutineType,
        types.FunctionType,
        types.GeneratorType,
        BaseModel,
    )
    return not isinstance(value, non_serializable_types)


class ArgillaLogger(CustomBatchLogger):
    def __init__(
        self,
        argilla_api_key: Optional[str] = None,
        argilla_dataset_name: Optional[str] = None,
        argilla_base_url: Optional[str] = None,
        **kwargs,
    ):
        if litellm.argilla_transformation_object is None:
            raise Exception(
                "'litellm.argilla_transformation_object' is required, to log your payload to Argilla."
            )
        self.validate_argilla_transformation_object(
            litellm.argilla_transformation_object
        )
        self.argilla_transformation_object = litellm.argilla_transformation_object
        self.default_credentials = self.get_credentials_from_env(
            argilla_api_key=argilla_api_key,
            argilla_dataset_name=argilla_dataset_name,
            argilla_base_url=argilla_base_url,
        )
        self.sampling_rate: float = (
            float(os.getenv("ARGILLA_SAMPLING_RATE"))  # type: ignore
            if os.getenv("ARGILLA_SAMPLING_RATE") is not None
            and os.getenv("ARGILLA_SAMPLING_RATE").strip().isdigit()  # type: ignore
            else 1.0
        )

        self.async_httpx_client = get_async_httpx_client(
            llm_provider=httpxSpecialProvider.LoggingCallback
        )
        _batch_size = (
            os.getenv("ARGILLA_BATCH_SIZE", None) or litellm.argilla_batch_size
        )
        if _batch_size:
            self.batch_size = int(_batch_size)
        asyncio.create_task(self.periodic_flush())
        self.flush_lock = asyncio.Lock()
        super().__init__(**kwargs, flush_lock=self.flush_lock)

    def validate_argilla_transformation_object(
        self, argilla_transformation_object: Dict[str, Any]
    ):
        if not isinstance(argilla_transformation_object, dict):
            raise Exception(
                "'argilla_transformation_object' must be a dictionary, to log your payload to Argilla."
            )

        for v in argilla_transformation_object.values():
            if v not in SUPPORTED_PAYLOAD_FIELDS:
                raise Exception(
                    f"All values in argilla_transformation_object must be a key in SUPPORTED_PAYLOAD_FIELDS, {v} is not a valid key."
                )

    def get_credentials_from_env(
        self,
        argilla_api_key: Optional[str],
        argilla_dataset_name: Optional[str],
        argilla_base_url: Optional[str],
    ) -> ArgillaCredentialsObject:

        _credentials_api_key = argilla_api_key or os.getenv("ARGILLA_API_KEY")
        if _credentials_api_key is None:
            raise Exception("Invalid Argilla API Key given. _credentials_api_key=None.")

        _credentials_base_url = (
            argilla_base_url
            or os.getenv("ARGILLA_BASE_URL")
            or "http://localhost:6900/"
        )
        if _credentials_base_url is None:
            raise Exception(
                "Invalid Argilla Base URL given. _credentials_base_url=None."
            )

        _credentials_dataset_name = (
            argilla_dataset_name
            or os.getenv("ARGILLA_DATASET_NAME")
            or "litellm-completion"
        )
        if _credentials_dataset_name is None:
            raise Exception("Invalid Argilla Dataset give. Value=None.")
        else:
            dataset_response = litellm.module_level_client.get(
                url=f"{_credentials_base_url}/api/v1/me/datasets?name={_credentials_dataset_name}",
                headers={"X-Argilla-Api-Key": _credentials_api_key},
            )
            json_response = dataset_response.json()
            if (
                "items" in json_response
                and isinstance(json_response["items"], list)
                and len(json_response["items"]) > 0
            ):
                _credentials_dataset_name = json_response["items"][0]["id"]

        return ArgillaCredentialsObject(
            ARGILLA_API_KEY=_credentials_api_key,
            ARGILLA_BASE_URL=_credentials_base_url,
            ARGILLA_DATASET_NAME=_credentials_dataset_name,
        )

    def get_chat_messages(
        self, payload: StandardLoggingPayload
    ) -> List[Dict[str, Any]]:
        payload_messages = payload.get("messages", None)

        if payload_messages is None:
            raise Exception("No chat messages found in payload.")

        if (
            isinstance(payload_messages, list)
            and len(payload_messages) > 0
            and isinstance(payload_messages[0], dict)
        ):
            return payload_messages
        elif isinstance(payload_messages, dict):
            return [payload_messages]
        else:
            raise Exception(f"Invalid chat messages format: {payload_messages}")

    def get_str_response(self, payload: StandardLoggingPayload) -> str:
        response = payload["response"]

        if response is None:
            raise Exception("No response found in payload.")

        if isinstance(response, str):
            return response
        elif isinstance(response, dict):
            return (
                response.get("choices", [{}])[0].get("message", {}).get("content", "")
            )
        else:
            raise Exception(f"Invalid response format: {response}")

    def _prepare_log_data(
        self, kwargs, response_obj, start_time, end_time
    ) -> Optional[ArgillaItem]:
        try:
            # Ensure everything in the payload is converted to str
            payload: Optional[StandardLoggingPayload] = kwargs.get(
                "standard_logging_object", None
            )

            if payload is None:
                raise Exception("Error logging request payload. Payload=none.")

            argilla_message = self.get_chat_messages(payload)
            argilla_response = self.get_str_response(payload)
            argilla_item: ArgillaItem = {"fields": {}}
            for k, v in self.argilla_transformation_object.items():
                if v == "messages":
                    argilla_item["fields"][k] = argilla_message
                elif v == "response":
                    argilla_item["fields"][k] = argilla_response
                else:
                    argilla_item["fields"][k] = payload.get(v, None)

            return argilla_item
        except Exception:
            raise

    def _send_batch(self):
        if not self.log_queue:
            return

        argilla_api_base = self.default_credentials["ARGILLA_BASE_URL"]
        argilla_dataset_name = self.default_credentials["ARGILLA_DATASET_NAME"]

        url = f"{argilla_api_base}/api/v1/datasets/{argilla_dataset_name}/records/bulk"

        argilla_api_key = self.default_credentials["ARGILLA_API_KEY"]

        headers = {"X-Argilla-Api-Key": argilla_api_key}

        try:
            response = litellm.module_level_client.post(
                url=url,
                json=self.log_queue,
                headers=headers,
            )

            if response.status_code >= 300:
                verbose_logger.error(
                    f"Argilla Error: {response.status_code} - {response.text}"
                )
            else:
                verbose_logger.debug(
                    f"Batch of {len(self.log_queue)} runs successfully created"
                )

            self.log_queue.clear()
        except Exception:
            verbose_logger.exception("Argilla Layer Error - Error sending batch.")

    def log_success_event(self, kwargs, response_obj, start_time, end_time):
        try:
            sampling_rate = (
                float(os.getenv("LANGSMITH_SAMPLING_RATE"))  # type: ignore
                if os.getenv("LANGSMITH_SAMPLING_RATE") is not None
                and os.getenv("LANGSMITH_SAMPLING_RATE").strip().isdigit()  # type: ignore
                else 1.0
            )
            random_sample = random.random()
            if random_sample > sampling_rate:
                verbose_logger.info(
                    "Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
                        sampling_rate, random_sample
                    )
                )
                return  # Skip logging
            verbose_logger.debug(
                "Langsmith Sync Layer Logging - kwargs: %s, response_obj: %s",
                kwargs,
                response_obj,
            )
            data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
            if data is None:
                return

            self.log_queue.append(data)
            verbose_logger.debug(
                f"Langsmith, event added to queue. Will flush in {self.flush_interval} seconds..."
            )

            if len(self.log_queue) >= self.batch_size:
                self._send_batch()

        except Exception:
            verbose_logger.exception("Langsmith Layer Error - log_success_event error")

    async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
        try:
            sampling_rate = self.sampling_rate
            random_sample = random.random()
            if random_sample > sampling_rate:
                verbose_logger.info(
                    "Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
                        sampling_rate, random_sample
                    )
                )
                return  # Skip logging
            verbose_logger.debug(
                "Langsmith Async Layer Logging - kwargs: %s, response_obj: %s",
                kwargs,
                response_obj,
            )
            payload: Optional[StandardLoggingPayload] = kwargs.get(
                "standard_logging_object", None
            )

            data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)

            ## ALLOW CUSTOM LOGGERS TO MODIFY / FILTER DATA BEFORE LOGGING
            for callback in litellm.callbacks:
                if isinstance(callback, CustomLogger):
                    try:
                        if data is None:
                            break
                        data = await callback.async_dataset_hook(data, payload)
                    except NotImplementedError:
                        pass

            if data is None:
                return

            self.log_queue.append(data)
            verbose_logger.debug(
                "Langsmith logging: queue length %s, batch size %s",
                len(self.log_queue),
                self.batch_size,
            )
            if len(self.log_queue) >= self.batch_size:
                await self.flush_queue()
        except Exception:
            verbose_logger.exception(
                "Argilla Layer Error - error logging async success event."
            )

    async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
        sampling_rate = self.sampling_rate
        random_sample = random.random()
        if random_sample > sampling_rate:
            verbose_logger.info(
                "Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
                    sampling_rate, random_sample
                )
            )
            return  # Skip logging
        verbose_logger.info("Langsmith Failure Event Logging!")
        try:
            data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
            self.log_queue.append(data)
            verbose_logger.debug(
                "Langsmith logging: queue length %s, batch size %s",
                len(self.log_queue),
                self.batch_size,
            )
            if len(self.log_queue) >= self.batch_size:
                await self.flush_queue()
        except Exception:
            verbose_logger.exception(
                "Langsmith Layer Error - error logging async failure event."
            )

    async def async_send_batch(self):
        """
        sends runs to /batch endpoint

        Sends runs from self.log_queue

        Returns: None

        Raises: Does not raise an exception, will only verbose_logger.exception()
        """
        if not self.log_queue:
            return

        argilla_api_base = self.default_credentials["ARGILLA_BASE_URL"]
        argilla_dataset_name = self.default_credentials["ARGILLA_DATASET_NAME"]

        url = f"{argilla_api_base}/api/v1/datasets/{argilla_dataset_name}/records/bulk"

        argilla_api_key = self.default_credentials["ARGILLA_API_KEY"]

        headers = {"X-Argilla-Api-Key": argilla_api_key}

        try:
            response = await self.async_httpx_client.put(
                url=url,
                data=json.dumps(
                    {
                        "items": self.log_queue,
                    }
                ),
                headers=headers,
                timeout=60000,
            )
            response.raise_for_status()

            if response.status_code >= 300:
                verbose_logger.error(
                    f"Argilla Error: {response.status_code} - {response.text}"
                )
            else:
                verbose_logger.debug(
                    "Batch of %s runs successfully created", len(self.log_queue)
                )
        except httpx.HTTPStatusError:
            verbose_logger.exception("Argilla HTTP Error")
        except Exception:
            verbose_logger.exception("Argilla Layer Error")