File size: 37,704 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
# What is this?
## File for 'response_cost' calculation in Logging
import time
from functools import lru_cache
from typing import Any, List, Literal, Optional, Tuple, Union
from pydantic import BaseModel
import litellm
import litellm._logging
from litellm import verbose_logger
from litellm.litellm_core_utils.llm_cost_calc.utils import _generic_cost_per_character
from litellm.llms.anthropic.cost_calculation import (
cost_per_token as anthropic_cost_per_token,
)
from litellm.llms.azure.cost_calculation import (
cost_per_token as azure_openai_cost_per_token,
)
from litellm.llms.azure_ai.cost_calculator import (
cost_per_query as azure_ai_rerank_cost_per_query,
)
from litellm.llms.bedrock.image.cost_calculator import (
cost_calculator as bedrock_image_cost_calculator,
)
from litellm.llms.cohere.cost_calculator import (
cost_per_query as cohere_rerank_cost_per_query,
)
from litellm.llms.databricks.cost_calculator import (
cost_per_token as databricks_cost_per_token,
)
from litellm.llms.deepseek.cost_calculator import (
cost_per_token as deepseek_cost_per_token,
)
from litellm.llms.fireworks_ai.cost_calculator import (
cost_per_token as fireworks_ai_cost_per_token,
)
from litellm.llms.gemini.cost_calculator import cost_per_token as gemini_cost_per_token
from litellm.llms.openai.cost_calculation import (
cost_per_second as openai_cost_per_second,
)
from litellm.llms.openai.cost_calculation import cost_per_token as openai_cost_per_token
from litellm.llms.together_ai.cost_calculator import get_model_params_and_category
from litellm.llms.vertex_ai.cost_calculator import (
cost_per_character as google_cost_per_character,
)
from litellm.llms.vertex_ai.cost_calculator import (
cost_per_token as google_cost_per_token,
)
from litellm.llms.vertex_ai.cost_calculator import cost_router as google_cost_router
from litellm.llms.vertex_ai.image_generation.cost_calculator import (
cost_calculator as vertex_ai_image_cost_calculator,
)
from litellm.types.llms.openai import HttpxBinaryResponseContent
from litellm.types.rerank import RerankResponse
from litellm.types.utils import (
CallTypesLiteral,
LlmProvidersSet,
PassthroughCallTypes,
Usage,
)
from litellm.utils import (
CallTypes,
CostPerToken,
EmbeddingResponse,
ImageResponse,
ModelResponse,
TextCompletionResponse,
TranscriptionResponse,
_cached_get_model_info_helper,
token_counter,
)
def _cost_per_token_custom_pricing_helper(
prompt_tokens: float = 0,
completion_tokens: float = 0,
response_time_ms: Optional[float] = 0.0,
### CUSTOM PRICING ###
custom_cost_per_token: Optional[CostPerToken] = None,
custom_cost_per_second: Optional[float] = None,
) -> Optional[Tuple[float, float]]:
"""Internal helper function for calculating cost, if custom pricing given"""
if custom_cost_per_token is None and custom_cost_per_second is None:
return None
if custom_cost_per_token is not None:
input_cost = custom_cost_per_token["input_cost_per_token"] * prompt_tokens
output_cost = custom_cost_per_token["output_cost_per_token"] * completion_tokens
return input_cost, output_cost
elif custom_cost_per_second is not None:
output_cost = custom_cost_per_second * response_time_ms / 1000 # type: ignore
return 0, output_cost
return None
def cost_per_token( # noqa: PLR0915
model: str = "",
prompt_tokens: int = 0,
completion_tokens: int = 0,
response_time_ms: Optional[float] = 0.0,
custom_llm_provider: Optional[str] = None,
region_name=None,
### CHARACTER PRICING ###
prompt_characters: Optional[int] = None,
completion_characters: Optional[int] = None,
### PROMPT CACHING PRICING ### - used for anthropic
cache_creation_input_tokens: Optional[int] = 0,
cache_read_input_tokens: Optional[int] = 0,
### CUSTOM PRICING ###
custom_cost_per_token: Optional[CostPerToken] = None,
custom_cost_per_second: Optional[float] = None,
### NUMBER OF QUERIES ###
number_of_queries: Optional[int] = None,
### USAGE OBJECT ###
usage_object: Optional[Usage] = None, # just read the usage object if provided
### CALL TYPE ###
call_type: CallTypesLiteral = "completion",
audio_transcription_file_duration: float = 0.0, # for audio transcription calls - the file time in seconds
) -> Tuple[float, float]: # type: ignore
"""
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
Parameters:
model (str): The name of the model to use. Default is ""
prompt_tokens (int): The number of tokens in the prompt.
completion_tokens (int): The number of tokens in the completion.
response_time (float): The amount of time, in milliseconds, it took the call to complete.
prompt_characters (float): The number of characters in the prompt. Used for vertex ai cost calculation.
completion_characters (float): The number of characters in the completion response. Used for vertex ai cost calculation.
custom_llm_provider (str): The llm provider to whom the call was made (see init.py for full list)
custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
call_type: Optional[str]: the call type
Returns:
tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively.
"""
if model is None:
raise Exception("Invalid arg. Model cannot be none.")
## RECONSTRUCT USAGE BLOCK ##
if usage_object is not None:
usage_block = usage_object
else:
usage_block = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
cache_creation_input_tokens=cache_creation_input_tokens,
cache_read_input_tokens=cache_read_input_tokens,
)
## CUSTOM PRICING ##
response_cost = _cost_per_token_custom_pricing_helper(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
response_time_ms=response_time_ms,
custom_cost_per_second=custom_cost_per_second,
custom_cost_per_token=custom_cost_per_token,
)
if response_cost is not None:
return response_cost[0], response_cost[1]
# given
prompt_tokens_cost_usd_dollar: float = 0
completion_tokens_cost_usd_dollar: float = 0
model_cost_ref = litellm.model_cost
model_with_provider = model
if custom_llm_provider is not None:
model_with_provider = custom_llm_provider + "/" + model
if region_name is not None:
model_with_provider_and_region = (
f"{custom_llm_provider}/{region_name}/{model}"
)
if (
model_with_provider_and_region in model_cost_ref
): # use region based pricing, if it's available
model_with_provider = model_with_provider_and_region
else:
_, custom_llm_provider, _, _ = litellm.get_llm_provider(model=model)
model_without_prefix = model
model_parts = model.split("/", 1)
if len(model_parts) > 1:
model_without_prefix = model_parts[1]
else:
model_without_prefix = model
"""
Code block that formats model to lookup in litellm.model_cost
Option1. model = "bedrock/ap-northeast-1/anthropic.claude-instant-v1". This is the most accurate since it is region based. Should always be option 1
Option2. model = "openai/gpt-4" - model = provider/model
Option3. model = "anthropic.claude-3" - model = model
"""
if (
model_with_provider in model_cost_ref
): # Option 2. use model with provider, model = "openai/gpt-4"
model = model_with_provider
elif model in model_cost_ref: # Option 1. use model passed, model="gpt-4"
model = model
elif (
model_without_prefix in model_cost_ref
): # Option 3. if user passed model="bedrock/anthropic.claude-3", use model="anthropic.claude-3"
model = model_without_prefix
# see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
if call_type == "speech" or call_type == "aspeech":
if prompt_characters is None:
raise ValueError(
"prompt_characters must be provided for tts calls. prompt_characters={}, model={}, custom_llm_provider={}, call_type={}".format(
prompt_characters,
model,
custom_llm_provider,
call_type,
)
)
prompt_cost, completion_cost = _generic_cost_per_character(
model=model_without_prefix,
custom_llm_provider=custom_llm_provider,
prompt_characters=prompt_characters,
completion_characters=0,
custom_prompt_cost=None,
custom_completion_cost=0,
)
if prompt_cost is None or completion_cost is None:
raise ValueError(
"cost for tts call is None. prompt_cost={}, completion_cost={}, model={}, custom_llm_provider={}, prompt_characters={}, completion_characters={}".format(
prompt_cost,
completion_cost,
model_without_prefix,
custom_llm_provider,
prompt_characters,
completion_characters,
)
)
return prompt_cost, completion_cost
elif call_type == "arerank" or call_type == "rerank":
return rerank_cost(
model=model,
custom_llm_provider=custom_llm_provider,
)
elif call_type == "atranscription" or call_type == "transcription":
return openai_cost_per_second(
model=model,
custom_llm_provider=custom_llm_provider,
duration=audio_transcription_file_duration,
)
elif custom_llm_provider == "vertex_ai":
cost_router = google_cost_router(
model=model_without_prefix,
custom_llm_provider=custom_llm_provider,
call_type=call_type,
)
if cost_router == "cost_per_character":
return google_cost_per_character(
model=model_without_prefix,
custom_llm_provider=custom_llm_provider,
prompt_characters=prompt_characters,
completion_characters=completion_characters,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
)
elif cost_router == "cost_per_token":
return google_cost_per_token(
model=model_without_prefix,
custom_llm_provider=custom_llm_provider,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
)
elif custom_llm_provider == "anthropic":
return anthropic_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "openai":
return openai_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "databricks":
return databricks_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "fireworks_ai":
return fireworks_ai_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "azure":
return azure_openai_cost_per_token(
model=model, usage=usage_block, response_time_ms=response_time_ms
)
elif custom_llm_provider == "gemini":
return gemini_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "deepseek":
return deepseek_cost_per_token(model=model, usage=usage_block)
else:
model_info = _cached_get_model_info_helper(
model=model, custom_llm_provider=custom_llm_provider
)
if model_info["input_cost_per_token"] > 0:
## COST PER TOKEN ##
prompt_tokens_cost_usd_dollar = (
model_info["input_cost_per_token"] * prompt_tokens
)
elif (
model_info.get("input_cost_per_second", None) is not None
and response_time_ms is not None
):
verbose_logger.debug(
"For model=%s - input_cost_per_second: %s; response time: %s",
model,
model_info.get("input_cost_per_second", None),
response_time_ms,
)
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = (
model_info["input_cost_per_second"] * response_time_ms / 1000 # type: ignore
)
if model_info["output_cost_per_token"] > 0:
completion_tokens_cost_usd_dollar = (
model_info["output_cost_per_token"] * completion_tokens
)
elif (
model_info.get("output_cost_per_second", None) is not None
and response_time_ms is not None
):
verbose_logger.debug(
"For model=%s - output_cost_per_second: %s; response time: %s",
model,
model_info.get("output_cost_per_second", None),
response_time_ms,
)
## COST PER SECOND ##
completion_tokens_cost_usd_dollar = (
model_info["output_cost_per_second"] * response_time_ms / 1000 # type: ignore
)
verbose_logger.debug(
"Returned custom cost for model=%s - prompt_tokens_cost_usd_dollar: %s, completion_tokens_cost_usd_dollar: %s",
model,
prompt_tokens_cost_usd_dollar,
completion_tokens_cost_usd_dollar,
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def get_replicate_completion_pricing(completion_response: dict, total_time=0.0):
# see https://replicate.com/pricing
# for all litellm currently supported LLMs, almost all requests go to a100_80gb
a100_80gb_price_per_second_public = (
0.001400 # assume all calls sent to A100 80GB for now
)
if total_time == 0.0: # total time is in ms
start_time = completion_response.get("created", time.time())
end_time = getattr(completion_response, "ended", time.time())
total_time = end_time - start_time
return a100_80gb_price_per_second_public * total_time / 1000
def has_hidden_params(obj: Any) -> bool:
return hasattr(obj, "_hidden_params")
def _get_provider_for_cost_calc(
model: Optional[str],
custom_llm_provider: Optional[str] = None,
) -> Optional[str]:
if custom_llm_provider is not None:
return custom_llm_provider
if model is None:
return None
try:
_, custom_llm_provider, _, _ = litellm.get_llm_provider(model=model)
except Exception as e:
verbose_logger.debug(
f"litellm.cost_calculator.py::_get_provider_for_cost_calc() - Error inferring custom_llm_provider - {str(e)}"
)
return None
return custom_llm_provider
def _select_model_name_for_cost_calc(
model: Optional[str],
completion_response: Optional[Any],
base_model: Optional[str] = None,
custom_pricing: Optional[bool] = None,
custom_llm_provider: Optional[str] = None,
) -> Optional[str]:
"""
1. If custom pricing is true, return received model name
2. If base_model is set (e.g. for azure models), return that
3. If completion response has model set return that
4. Check if model is passed in return that
"""
return_model: Optional[str] = None
region_name: Optional[str] = None
custom_llm_provider = _get_provider_for_cost_calc(
model=model, custom_llm_provider=custom_llm_provider
)
if custom_pricing is True:
return_model = model
if base_model is not None:
return_model = base_model
completion_response_model: Optional[str] = getattr(
completion_response, "model", None
)
hidden_params: Optional[dict] = getattr(completion_response, "_hidden_params", None)
if completion_response_model is None and hidden_params is not None:
if (
hidden_params.get("model", None) is not None
and len(hidden_params["model"]) > 0
):
return_model = hidden_params.get("model", model)
if hidden_params is not None and hidden_params.get("region_name", None) is not None:
region_name = hidden_params.get("region_name", None)
if return_model is None and completion_response_model is not None:
return_model = completion_response_model
if return_model is None and model is not None:
return_model = model
if (
return_model is not None
and custom_llm_provider is not None
and not _model_contains_known_llm_provider(return_model)
): # add provider prefix if not already present, to match model_cost
if region_name is not None:
return_model = f"{custom_llm_provider}/{region_name}/{return_model}"
else:
return_model = f"{custom_llm_provider}/{return_model}"
return return_model
@lru_cache(maxsize=16)
def _model_contains_known_llm_provider(model: str) -> bool:
"""
Check if the model contains a known llm provider
"""
_provider_prefix = model.split("/")[0]
return _provider_prefix in LlmProvidersSet
def _get_usage_object(
completion_response: Any,
) -> Optional[Usage]:
usage_obj: Optional[Usage] = None
if completion_response is not None and isinstance(
completion_response, ModelResponse
):
usage_obj = completion_response.get("usage")
return usage_obj
def _infer_call_type(
call_type: Optional[CallTypesLiteral], completion_response: Any
) -> Optional[CallTypesLiteral]:
if call_type is not None:
return call_type
if completion_response is None:
return None
if isinstance(completion_response, ModelResponse):
return "completion"
elif isinstance(completion_response, EmbeddingResponse):
return "embedding"
elif isinstance(completion_response, TranscriptionResponse):
return "transcription"
elif isinstance(completion_response, HttpxBinaryResponseContent):
return "speech"
elif isinstance(completion_response, RerankResponse):
return "rerank"
elif isinstance(completion_response, ImageResponse):
return "image_generation"
elif isinstance(completion_response, TextCompletionResponse):
return "text_completion"
return call_type
def completion_cost( # noqa: PLR0915
completion_response=None,
model: Optional[str] = None,
prompt="",
messages: List = [],
completion="",
total_time: Optional[float] = 0.0, # used for replicate, sagemaker
call_type: Optional[CallTypesLiteral] = None,
### REGION ###
custom_llm_provider=None,
region_name=None, # used for bedrock pricing
### IMAGE GEN ###
size: Optional[str] = None,
quality: Optional[str] = None,
n: Optional[int] = None, # number of images
### CUSTOM PRICING ###
custom_cost_per_token: Optional[CostPerToken] = None,
custom_cost_per_second: Optional[float] = None,
optional_params: Optional[dict] = None,
custom_pricing: Optional[bool] = None,
base_model: Optional[str] = None,
) -> float:
"""
Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
Parameters:
completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
[OPTIONAL PARAMS]
model (str): Optional. The name of the language model used in the completion calls
prompt (str): Optional. The input prompt passed to the llm
completion (str): Optional. The output completion text from the llm
total_time (float, int): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
Returns:
float: The cost in USD dollars for the completion based on the provided parameters.
Exceptions:
Raises exception if model not in the litellm model cost map. Register model, via custom pricing or PR - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json
Note:
- If completion_response is provided, the function extracts token information and the model name from it.
- If completion_response is not provided, the function calculates token counts based on the model and input text.
- The cost is calculated based on the model, prompt tokens, and completion tokens.
- For certain models containing "togethercomputer" in the name, prices are based on the model size.
- For un-mapped Replicate models, the cost is calculated based on the total time used for the request.
"""
try:
call_type = _infer_call_type(call_type, completion_response) or "completion"
if (
(call_type == "aimage_generation" or call_type == "image_generation")
and model is not None
and isinstance(model, str)
and len(model) == 0
and custom_llm_provider == "azure"
):
model = "dall-e-2" # for dall-e-2, azure expects an empty model name
# Handle Inputs to completion_cost
prompt_tokens = 0
prompt_characters: Optional[int] = None
completion_tokens = 0
completion_characters: Optional[int] = None
cache_creation_input_tokens: Optional[int] = None
cache_read_input_tokens: Optional[int] = None
audio_transcription_file_duration: float = 0.0
cost_per_token_usage_object: Optional[Usage] = _get_usage_object(
completion_response=completion_response
)
model = _select_model_name_for_cost_calc(
model=model,
completion_response=completion_response,
custom_llm_provider=custom_llm_provider,
custom_pricing=custom_pricing,
base_model=base_model,
)
verbose_logger.debug(
f"completion_response _select_model_name_for_cost_calc: {model}"
)
if completion_response is not None and (
isinstance(completion_response, BaseModel)
or isinstance(completion_response, dict)
): # tts returns a custom class
if isinstance(completion_response, dict):
usage_obj: Optional[Union[dict, Usage]] = completion_response.get(
"usage", {}
)
else:
usage_obj = getattr(completion_response, "usage", {})
if isinstance(usage_obj, BaseModel) and not isinstance(
usage_obj, litellm.Usage
):
setattr(
completion_response,
"usage",
litellm.Usage(**usage_obj.model_dump()),
)
if usage_obj is None:
_usage = {}
elif isinstance(usage_obj, BaseModel):
_usage = usage_obj.model_dump()
else:
_usage = usage_obj
# get input/output tokens from completion_response
prompt_tokens = _usage.get("prompt_tokens", 0)
completion_tokens = _usage.get("completion_tokens", 0)
cache_creation_input_tokens = _usage.get("cache_creation_input_tokens", 0)
cache_read_input_tokens = _usage.get("cache_read_input_tokens", 0)
if (
"prompt_tokens_details" in _usage
and _usage["prompt_tokens_details"] != {}
and _usage["prompt_tokens_details"]
):
prompt_tokens_details = _usage.get("prompt_tokens_details", {})
cache_read_input_tokens = prompt_tokens_details.get("cached_tokens", 0)
total_time = getattr(completion_response, "_response_ms", 0)
hidden_params = getattr(completion_response, "_hidden_params", None)
if hidden_params is not None:
custom_llm_provider = hidden_params.get(
"custom_llm_provider", custom_llm_provider or None
)
region_name = hidden_params.get("region_name", region_name)
size = hidden_params.get("optional_params", {}).get(
"size", "1024-x-1024"
) # openai default
quality = hidden_params.get("optional_params", {}).get(
"quality", "standard"
) # openai default
n = hidden_params.get("optional_params", {}).get(
"n", 1
) # openai default
else:
if model is None:
raise ValueError(
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
)
if len(messages) > 0:
prompt_tokens = token_counter(model=model, messages=messages)
elif len(prompt) > 0:
prompt_tokens = token_counter(model=model, text=prompt)
completion_tokens = token_counter(model=model, text=completion)
if model is None:
raise ValueError(
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
)
if custom_llm_provider is None:
try:
model, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=model
) # strip the llm provider from the model name -> for image gen cost calculation
except Exception as e:
verbose_logger.debug(
"litellm.cost_calculator.py::completion_cost() - Error inferring custom_llm_provider - {}".format(
str(e)
)
)
if (
call_type == CallTypes.image_generation.value
or call_type == CallTypes.aimage_generation.value
or call_type == PassthroughCallTypes.passthrough_image_generation.value
):
### IMAGE GENERATION COST CALCULATION ###
if custom_llm_provider == "vertex_ai":
if isinstance(completion_response, ImageResponse):
return vertex_ai_image_cost_calculator(
model=model,
image_response=completion_response,
)
elif custom_llm_provider == "bedrock":
if isinstance(completion_response, ImageResponse):
return bedrock_image_cost_calculator(
model=model,
size=size,
image_response=completion_response,
optional_params=optional_params,
)
raise TypeError(
"completion_response must be of type ImageResponse for bedrock image cost calculation"
)
else:
return default_image_cost_calculator(
model=model,
quality=quality,
custom_llm_provider=custom_llm_provider,
n=n,
size=size,
optional_params=optional_params,
)
elif (
call_type == CallTypes.speech.value or call_type == CallTypes.aspeech.value
):
prompt_characters = litellm.utils._count_characters(text=prompt)
elif (
call_type == CallTypes.atranscription.value
or call_type == CallTypes.transcription.value
):
audio_transcription_file_duration = getattr(
completion_response, "duration", 0.0
)
elif (
call_type == CallTypes.rerank.value or call_type == CallTypes.arerank.value
):
if completion_response is not None and isinstance(
completion_response, RerankResponse
):
meta_obj = completion_response.meta
if meta_obj is not None:
billed_units = meta_obj.get("billed_units", {}) or {}
else:
billed_units = {}
search_units = (
billed_units.get("search_units") or 1
) # cohere charges per request by default.
completion_tokens = search_units
# Calculate cost based on prompt_tokens, completion_tokens
if (
"togethercomputer" in model
or "together_ai" in model
or custom_llm_provider == "together_ai"
):
# together ai prices based on size of llm
# get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
model = get_model_params_and_category(model, call_type=CallTypes(call_type))
# replicate llms are calculate based on time for request running
# see https://replicate.com/pricing
elif (
model in litellm.replicate_models or "replicate" in model
) and model not in litellm.model_cost:
# for unmapped replicate model, default to replicate's time tracking logic
return get_replicate_completion_pricing(completion_response, total_time) # type: ignore
if model is None:
raise ValueError(
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
)
if custom_llm_provider is not None and custom_llm_provider == "vertex_ai":
# Calculate the prompt characters + response characters
if len(messages) > 0:
prompt_string = litellm.utils.get_formatted_prompt(
data={"messages": messages}, call_type="completion"
)
prompt_characters = litellm.utils._count_characters(text=prompt_string)
if completion_response is not None and isinstance(
completion_response, ModelResponse
):
completion_string = litellm.utils.get_response_string(
response_obj=completion_response
)
completion_characters = litellm.utils._count_characters(
text=completion_string
)
(
prompt_tokens_cost_usd_dollar,
completion_tokens_cost_usd_dollar,
) = cost_per_token(
model=model,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
custom_llm_provider=custom_llm_provider,
response_time_ms=total_time,
region_name=region_name,
custom_cost_per_second=custom_cost_per_second,
custom_cost_per_token=custom_cost_per_token,
prompt_characters=prompt_characters,
completion_characters=completion_characters,
cache_creation_input_tokens=cache_creation_input_tokens,
cache_read_input_tokens=cache_read_input_tokens,
usage_object=cost_per_token_usage_object,
call_type=call_type,
audio_transcription_file_duration=audio_transcription_file_duration,
)
_final_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
return _final_cost
except Exception as e:
raise e
def response_cost_calculator(
response_object: Union[
ModelResponse,
EmbeddingResponse,
ImageResponse,
TranscriptionResponse,
TextCompletionResponse,
HttpxBinaryResponseContent,
RerankResponse,
],
model: str,
custom_llm_provider: Optional[str],
call_type: Literal[
"embedding",
"aembedding",
"completion",
"acompletion",
"atext_completion",
"text_completion",
"image_generation",
"aimage_generation",
"moderation",
"amoderation",
"atranscription",
"transcription",
"aspeech",
"speech",
"rerank",
"arerank",
],
optional_params: dict,
cache_hit: Optional[bool] = None,
base_model: Optional[str] = None,
custom_pricing: Optional[bool] = None,
prompt: str = "",
) -> Optional[float]:
"""
Returns
- float or None: cost of response
"""
try:
response_cost: float = 0.0
if cache_hit is not None and cache_hit is True:
response_cost = 0.0
else:
if isinstance(response_object, BaseModel):
response_object._hidden_params["optional_params"] = optional_params
response_cost = completion_cost(
completion_response=response_object,
model=model,
call_type=call_type,
custom_llm_provider=custom_llm_provider,
optional_params=optional_params,
custom_pricing=custom_pricing,
base_model=base_model,
prompt=prompt,
)
return response_cost
except Exception as e:
raise e
def rerank_cost(
model: str,
custom_llm_provider: Optional[str],
) -> Tuple[float, float]:
"""
Returns
- float or None: cost of response OR none if error.
"""
default_num_queries = 1
_, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=model, custom_llm_provider=custom_llm_provider
)
try:
if custom_llm_provider == "cohere":
return cohere_rerank_cost_per_query(
model=model, num_queries=default_num_queries
)
elif custom_llm_provider == "azure_ai":
return azure_ai_rerank_cost_per_query(
model=model, num_queries=default_num_queries
)
raise ValueError(
f"invalid custom_llm_provider for rerank model: {model}, custom_llm_provider: {custom_llm_provider}"
)
except Exception as e:
raise e
def transcription_cost(
model: str, custom_llm_provider: Optional[str], duration: float
) -> Tuple[float, float]:
return openai_cost_per_second(
model=model, custom_llm_provider=custom_llm_provider, duration=duration
)
def default_image_cost_calculator(
model: str,
custom_llm_provider: Optional[str] = None,
quality: Optional[str] = None,
n: Optional[int] = 1, # Default to 1 image
size: Optional[str] = "1024-x-1024", # OpenAI default
optional_params: Optional[dict] = None,
) -> float:
"""
Default image cost calculator for image generation
Args:
model (str): Model name
image_response (ImageResponse): Response from image generation
quality (Optional[str]): Image quality setting
n (Optional[int]): Number of images generated
size (Optional[str]): Image size (e.g. "1024x1024" or "1024-x-1024")
Returns:
float: Cost in USD for the image generation
Raises:
Exception: If model pricing not found in cost map
"""
# Standardize size format to use "-x-"
size_str: str = size or "1024-x-1024"
size_str = (
size_str.replace("x", "-x-")
if "x" in size_str and "-x-" not in size_str
else size_str
)
# Parse dimensions
height, width = map(int, size_str.split("-x-"))
# Build model names for cost lookup
base_model_name = f"{size_str}/{model}"
if custom_llm_provider and model.startswith(custom_llm_provider):
base_model_name = (
f"{custom_llm_provider}/{size_str}/{model.replace(custom_llm_provider, '')}"
)
model_name_with_quality = (
f"{quality}/{base_model_name}" if quality else base_model_name
)
verbose_logger.debug(
f"Looking up cost for models: {model_name_with_quality}, {base_model_name}"
)
# Try model with quality first, fall back to base model name
if model_name_with_quality in litellm.model_cost:
cost_info = litellm.model_cost[model_name_with_quality]
elif base_model_name in litellm.model_cost:
cost_info = litellm.model_cost[base_model_name]
else:
# Try without provider prefix
model_without_provider = f"{size_str}/{model.split('/')[-1]}"
model_with_quality_without_provider = (
f"{quality}/{model_without_provider}" if quality else model_without_provider
)
if model_with_quality_without_provider in litellm.model_cost:
cost_info = litellm.model_cost[model_with_quality_without_provider]
elif model_without_provider in litellm.model_cost:
cost_info = litellm.model_cost[model_without_provider]
else:
raise Exception(
f"Model not found in cost map. Tried {model_name_with_quality}, {base_model_name}, {model_with_quality_without_provider}, and {model_without_provider}"
)
return cost_info["input_cost_per_pixel"] * height * width * n
|