File size: 11,651 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from typing import List

ROUTER_MAX_FALLBACKS = 5
DEFAULT_BATCH_SIZE = 512
DEFAULT_FLUSH_INTERVAL_SECONDS = 5
DEFAULT_MAX_RETRIES = 2
DEFAULT_FAILURE_THRESHOLD_PERCENT = (
    0.5  # default cooldown a deployment if 50% of requests fail in a given minute
)
DEFAULT_COOLDOWN_TIME_SECONDS = 5
DEFAULT_REPLICATE_POLLING_RETRIES = 5
DEFAULT_REPLICATE_POLLING_DELAY_SECONDS = 1
DEFAULT_IMAGE_TOKEN_COUNT = 250
DEFAULT_IMAGE_WIDTH = 300
DEFAULT_IMAGE_HEIGHT = 300
SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD = 1000  # Minimum number of requests to consider "reasonable traffic". Used for single-deployment cooldown logic.
#### RELIABILITY ####
REPEATED_STREAMING_CHUNK_LIMIT = 100  # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives.
#### Networking settings ####
request_timeout: float = 6000  # time in seconds

LITELLM_CHAT_PROVIDERS = [
    "openai",
    "openai_like",
    "xai",
    "custom_openai",
    "text-completion-openai",
    "cohere",
    "cohere_chat",
    "clarifai",
    "anthropic",
    "anthropic_text",
    "replicate",
    "huggingface",
    "together_ai",
    "openrouter",
    "vertex_ai",
    "vertex_ai_beta",
    "gemini",
    "ai21",
    "baseten",
    "azure",
    "azure_text",
    "azure_ai",
    "sagemaker",
    "sagemaker_chat",
    "bedrock",
    "vllm",
    "nlp_cloud",
    "petals",
    "oobabooga",
    "ollama",
    "ollama_chat",
    "deepinfra",
    "perplexity",
    "mistral",
    "groq",
    "nvidia_nim",
    "cerebras",
    "ai21_chat",
    "volcengine",
    "codestral",
    "text-completion-codestral",
    "deepseek",
    "sambanova",
    "maritalk",
    "cloudflare",
    "fireworks_ai",
    "friendliai",
    "watsonx",
    "watsonx_text",
    "triton",
    "predibase",
    "databricks",
    "empower",
    "github",
    "custom",
    "litellm_proxy",
    "hosted_vllm",
    "lm_studio",
    "galadriel",
]


OPENAI_CHAT_COMPLETION_PARAMS = [
    "functions",
    "function_call",
    "temperature",
    "temperature",
    "top_p",
    "n",
    "stream",
    "stream_options",
    "stop",
    "max_completion_tokens",
    "modalities",
    "prediction",
    "audio",
    "max_tokens",
    "presence_penalty",
    "frequency_penalty",
    "logit_bias",
    "user",
    "request_timeout",
    "api_base",
    "api_version",
    "api_key",
    "deployment_id",
    "organization",
    "base_url",
    "default_headers",
    "timeout",
    "response_format",
    "seed",
    "tools",
    "tool_choice",
    "max_retries",
    "parallel_tool_calls",
    "logprobs",
    "top_logprobs",
    "reasoning_effort",
    "extra_headers",
]

openai_compatible_endpoints: List = [
    "api.perplexity.ai",
    "api.endpoints.anyscale.com/v1",
    "api.deepinfra.com/v1/openai",
    "api.mistral.ai/v1",
    "codestral.mistral.ai/v1/chat/completions",
    "codestral.mistral.ai/v1/fim/completions",
    "api.groq.com/openai/v1",
    "https://integrate.api.nvidia.com/v1",
    "api.deepseek.com/v1",
    "api.together.xyz/v1",
    "app.empower.dev/api/v1",
    "https://api.friendli.ai/serverless/v1",
    "api.sambanova.ai/v1",
    "api.x.ai/v1",
    "api.galadriel.ai/v1",
]


openai_compatible_providers: List = [
    "anyscale",
    "mistral",
    "groq",
    "nvidia_nim",
    "cerebras",
    "sambanova",
    "ai21_chat",
    "ai21",
    "volcengine",
    "codestral",
    "deepseek",
    "deepinfra",
    "perplexity",
    "xinference",
    "xai",
    "together_ai",
    "fireworks_ai",
    "empower",
    "friendliai",
    "azure_ai",
    "github",
    "litellm_proxy",
    "hosted_vllm",
    "lm_studio",
    "galadriel",
]
openai_text_completion_compatible_providers: List = (
    [  # providers that support `/v1/completions`
        "together_ai",
        "fireworks_ai",
        "hosted_vllm",
    ]
)
_openai_like_providers: List = [
    "predibase",
    "databricks",
    "watsonx",
]  # private helper. similar to openai but require some custom auth / endpoint handling, so can't use the openai sdk
# well supported replicate llms
replicate_models: List = [
    # llama replicate supported LLMs
    "replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
    "a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52",
    "meta/codellama-13b:1c914d844307b0588599b8393480a3ba917b660c7e9dfae681542b5325f228db",
    # Vicuna
    "replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b",
    "joehoover/instructblip-vicuna13b:c4c54e3c8c97cd50c2d2fec9be3b6065563ccf7d43787fb99f84151b867178fe",
    # Flan T-5
    "daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f",
    # Others
    "replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5",
    "replit/replit-code-v1-3b:b84f4c074b807211cd75e3e8b1589b6399052125b4c27106e43d47189e8415ad",
]

clarifai_models: List = [
    "clarifai/meta.Llama-3.Llama-3-8B-Instruct",
    "clarifai/gcp.generate.gemma-1_1-7b-it",
    "clarifai/mistralai.completion.mixtral-8x22B",
    "clarifai/cohere.generate.command-r-plus",
    "clarifai/databricks.drbx.dbrx-instruct",
    "clarifai/mistralai.completion.mistral-large",
    "clarifai/mistralai.completion.mistral-medium",
    "clarifai/mistralai.completion.mistral-small",
    "clarifai/mistralai.completion.mixtral-8x7B-Instruct-v0_1",
    "clarifai/gcp.generate.gemma-2b-it",
    "clarifai/gcp.generate.gemma-7b-it",
    "clarifai/deci.decilm.deciLM-7B-instruct",
    "clarifai/mistralai.completion.mistral-7B-Instruct",
    "clarifai/gcp.generate.gemini-pro",
    "clarifai/anthropic.completion.claude-v1",
    "clarifai/anthropic.completion.claude-instant-1_2",
    "clarifai/anthropic.completion.claude-instant",
    "clarifai/anthropic.completion.claude-v2",
    "clarifai/anthropic.completion.claude-2_1",
    "clarifai/meta.Llama-2.codeLlama-70b-Python",
    "clarifai/meta.Llama-2.codeLlama-70b-Instruct",
    "clarifai/openai.completion.gpt-3_5-turbo-instruct",
    "clarifai/meta.Llama-2.llama2-7b-chat",
    "clarifai/meta.Llama-2.llama2-13b-chat",
    "clarifai/meta.Llama-2.llama2-70b-chat",
    "clarifai/openai.chat-completion.gpt-4-turbo",
    "clarifai/microsoft.text-generation.phi-2",
    "clarifai/meta.Llama-2.llama2-7b-chat-vllm",
    "clarifai/upstage.solar.solar-10_7b-instruct",
    "clarifai/openchat.openchat.openchat-3_5-1210",
    "clarifai/togethercomputer.stripedHyena.stripedHyena-Nous-7B",
    "clarifai/gcp.generate.text-bison",
    "clarifai/meta.Llama-2.llamaGuard-7b",
    "clarifai/fblgit.una-cybertron.una-cybertron-7b-v2",
    "clarifai/openai.chat-completion.GPT-4",
    "clarifai/openai.chat-completion.GPT-3_5-turbo",
    "clarifai/ai21.complete.Jurassic2-Grande",
    "clarifai/ai21.complete.Jurassic2-Grande-Instruct",
    "clarifai/ai21.complete.Jurassic2-Jumbo-Instruct",
    "clarifai/ai21.complete.Jurassic2-Jumbo",
    "clarifai/ai21.complete.Jurassic2-Large",
    "clarifai/cohere.generate.cohere-generate-command",
    "clarifai/wizardlm.generate.wizardCoder-Python-34B",
    "clarifai/wizardlm.generate.wizardLM-70B",
    "clarifai/tiiuae.falcon.falcon-40b-instruct",
    "clarifai/togethercomputer.RedPajama.RedPajama-INCITE-7B-Chat",
    "clarifai/gcp.generate.code-gecko",
    "clarifai/gcp.generate.code-bison",
    "clarifai/mistralai.completion.mistral-7B-OpenOrca",
    "clarifai/mistralai.completion.openHermes-2-mistral-7B",
    "clarifai/wizardlm.generate.wizardLM-13B",
    "clarifai/huggingface-research.zephyr.zephyr-7B-alpha",
    "clarifai/wizardlm.generate.wizardCoder-15B",
    "clarifai/microsoft.text-generation.phi-1_5",
    "clarifai/databricks.Dolly-v2.dolly-v2-12b",
    "clarifai/bigcode.code.StarCoder",
    "clarifai/salesforce.xgen.xgen-7b-8k-instruct",
    "clarifai/mosaicml.mpt.mpt-7b-instruct",
    "clarifai/anthropic.completion.claude-3-opus",
    "clarifai/anthropic.completion.claude-3-sonnet",
    "clarifai/gcp.generate.gemini-1_5-pro",
    "clarifai/gcp.generate.imagen-2",
    "clarifai/salesforce.blip.general-english-image-caption-blip-2",
]


huggingface_models: List = [
    "meta-llama/Llama-2-7b-hf",
    "meta-llama/Llama-2-7b-chat-hf",
    "meta-llama/Llama-2-13b-hf",
    "meta-llama/Llama-2-13b-chat-hf",
    "meta-llama/Llama-2-70b-hf",
    "meta-llama/Llama-2-70b-chat-hf",
    "meta-llama/Llama-2-7b",
    "meta-llama/Llama-2-7b-chat",
    "meta-llama/Llama-2-13b",
    "meta-llama/Llama-2-13b-chat",
    "meta-llama/Llama-2-70b",
    "meta-llama/Llama-2-70b-chat",
]  # these have been tested on extensively. But by default all text2text-generation and text-generation models are supported by liteLLM. - https://docs.litellm.ai/docs/providers
empower_models = [
    "empower/empower-functions",
    "empower/empower-functions-small",
]

together_ai_models: List = [
    # llama llms - chat
    "togethercomputer/llama-2-70b-chat",
    # llama llms - language / instruct
    "togethercomputer/llama-2-70b",
    "togethercomputer/LLaMA-2-7B-32K",
    "togethercomputer/Llama-2-7B-32K-Instruct",
    "togethercomputer/llama-2-7b",
    # falcon llms
    "togethercomputer/falcon-40b-instruct",
    "togethercomputer/falcon-7b-instruct",
    # alpaca
    "togethercomputer/alpaca-7b",
    # chat llms
    "HuggingFaceH4/starchat-alpha",
    # code llms
    "togethercomputer/CodeLlama-34b",
    "togethercomputer/CodeLlama-34b-Instruct",
    "togethercomputer/CodeLlama-34b-Python",
    "defog/sqlcoder",
    "NumbersStation/nsql-llama-2-7B",
    "WizardLM/WizardCoder-15B-V1.0",
    "WizardLM/WizardCoder-Python-34B-V1.0",
    # language llms
    "NousResearch/Nous-Hermes-Llama2-13b",
    "Austism/chronos-hermes-13b",
    "upstage/SOLAR-0-70b-16bit",
    "WizardLM/WizardLM-70B-V1.0",
]  # supports all together ai models, just pass in the model id e.g. completion(model="together_computer/replit_code_3b",...)


baseten_models: List = [
    "qvv0xeq",
    "q841o8w",
    "31dxrj3",
]  # FALCON 7B  # WizardLM  # Mosaic ML


open_ai_embedding_models: List = ["text-embedding-ada-002"]
cohere_embedding_models: List = [
    "embed-english-v3.0",
    "embed-english-light-v3.0",
    "embed-multilingual-v3.0",
    "embed-english-v2.0",
    "embed-english-light-v2.0",
    "embed-multilingual-v2.0",
]
bedrock_embedding_models: List = [
    "amazon.titan-embed-text-v1",
    "cohere.embed-english-v3",
    "cohere.embed-multilingual-v3",
]


OPENAI_FINISH_REASONS = ["stop", "length", "function_call", "content_filter", "null"]
HUMANLOOP_PROMPT_CACHE_TTL_SECONDS = 60  # 1 minute
RESPONSE_FORMAT_TOOL_NAME = "json_tool_call"  # default tool name used when converting response format to tool call

########################### Logging Callback Constants ###########################
AZURE_STORAGE_MSFT_VERSION = "2019-07-07"

########################### LiteLLM Proxy Specific Constants ###########################
########################################################################################
MAX_SPENDLOG_ROWS_TO_QUERY = (
    1_000_000  # if spendLogs has more than 1M rows, do not query the DB
)
# makes it clear this is a rate limit error for a litellm virtual key
RATE_LIMIT_ERROR_MESSAGE_FOR_VIRTUAL_KEY = "LiteLLM Virtual Key user_api_key_hash"

# pass through route constansts
BEDROCK_AGENT_RUNTIME_PASS_THROUGH_ROUTES = [
    "agents/",
    "knowledgebases/",
    "flows/",
    "retrieveAndGenerate/",
    "rerank/",
    "generateQuery/",
    "optimize-prompt/",
]

BATCH_STATUS_POLL_INTERVAL_SECONDS = 3600  # 1 hour
BATCH_STATUS_POLL_MAX_ATTEMPTS = 24  # for 24 hours

HEALTH_CHECK_TIMEOUT_SECONDS = 60  # 60 seconds

UI_SESSION_TOKEN_TEAM_ID = "litellm-dashboard"