File size: 34,263 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
"""
This contains LLMCachingHandler
This exposes two methods:
- async_get_cache
- async_set_cache
This file is a wrapper around caching.py
This class is used to handle caching logic specific for LLM API requests (completion / embedding / text_completion / transcription etc)
It utilizes the (RedisCache, s3Cache, RedisSemanticCache, QdrantSemanticCache, InMemoryCache, DiskCache) based on what the user has setup
In each method it will call the appropriate method from caching.py
"""
import asyncio
import datetime
import inspect
import threading
from typing import (
TYPE_CHECKING,
Any,
AsyncGenerator,
Callable,
Dict,
Generator,
List,
Optional,
Tuple,
Union,
)
from pydantic import BaseModel
import litellm
from litellm._logging import print_verbose, verbose_logger
from litellm.caching.caching import S3Cache
from litellm.litellm_core_utils.logging_utils import (
_assemble_complete_response_from_streaming_chunks,
)
from litellm.types.rerank import RerankResponse
from litellm.types.utils import (
CallTypes,
Embedding,
EmbeddingResponse,
ModelResponse,
TextCompletionResponse,
TranscriptionResponse,
)
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.utils import CustomStreamWrapper
else:
LiteLLMLoggingObj = Any
CustomStreamWrapper = Any
class CachingHandlerResponse(BaseModel):
"""
This is the response object for the caching handler. We need to separate embedding cached responses and (completion / text_completion / transcription) cached responses
For embeddings there can be a cache hit for some of the inputs in the list and a cache miss for others
"""
cached_result: Optional[Any] = None
final_embedding_cached_response: Optional[EmbeddingResponse] = None
embedding_all_elements_cache_hit: bool = (
False # this is set to True when all elements in the list have a cache hit in the embedding cache, if true return the final_embedding_cached_response no need to make an API call
)
class LLMCachingHandler:
def __init__(
self,
original_function: Callable,
request_kwargs: Dict[str, Any],
start_time: datetime.datetime,
):
self.async_streaming_chunks: List[ModelResponse] = []
self.sync_streaming_chunks: List[ModelResponse] = []
self.request_kwargs = request_kwargs
self.original_function = original_function
self.start_time = start_time
pass
async def _async_get_cache(
self,
model: str,
original_function: Callable,
logging_obj: LiteLLMLoggingObj,
start_time: datetime.datetime,
call_type: str,
kwargs: Dict[str, Any],
args: Optional[Tuple[Any, ...]] = None,
) -> CachingHandlerResponse:
"""
Internal method to get from the cache.
Handles different call types (embeddings, chat/completions, text_completion, transcription)
and accordingly returns the cached response
Args:
model: str:
original_function: Callable:
logging_obj: LiteLLMLoggingObj:
start_time: datetime.datetime:
call_type: str:
kwargs: Dict[str, Any]:
args: Optional[Tuple[Any, ...]] = None:
Returns:
CachingHandlerResponse:
Raises:
None
"""
from litellm.utils import CustomStreamWrapper
args = args or ()
final_embedding_cached_response: Optional[EmbeddingResponse] = None
embedding_all_elements_cache_hit: bool = False
cached_result: Optional[Any] = None
if (
(kwargs.get("caching", None) is None and litellm.cache is not None)
or kwargs.get("caching", False) is True
) and (
kwargs.get("cache", {}).get("no-cache", False) is not True
): # allow users to control returning cached responses from the completion function
if litellm.cache is not None and self._is_call_type_supported_by_cache(
original_function=original_function
):
verbose_logger.debug("Checking Cache")
cached_result = await self._retrieve_from_cache(
call_type=call_type,
kwargs=kwargs,
args=args,
)
if cached_result is not None and not isinstance(cached_result, list):
verbose_logger.debug("Cache Hit!")
cache_hit = True
end_time = datetime.datetime.now()
model, _, _, _ = litellm.get_llm_provider(
model=model,
custom_llm_provider=kwargs.get("custom_llm_provider", None),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
self._update_litellm_logging_obj_environment(
logging_obj=logging_obj,
model=model,
kwargs=kwargs,
cached_result=cached_result,
is_async=True,
)
call_type = original_function.__name__
cached_result = self._convert_cached_result_to_model_response(
cached_result=cached_result,
call_type=call_type,
kwargs=kwargs,
logging_obj=logging_obj,
model=model,
custom_llm_provider=kwargs.get("custom_llm_provider", None),
args=args,
)
if kwargs.get("stream", False) is False:
# LOG SUCCESS
self._async_log_cache_hit_on_callbacks(
logging_obj=logging_obj,
cached_result=cached_result,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
)
cache_key = litellm.cache._get_preset_cache_key_from_kwargs(
**kwargs
)
if (
isinstance(cached_result, BaseModel)
or isinstance(cached_result, CustomStreamWrapper)
) and hasattr(cached_result, "_hidden_params"):
cached_result._hidden_params["cache_key"] = cache_key # type: ignore
return CachingHandlerResponse(cached_result=cached_result)
elif (
call_type == CallTypes.aembedding.value
and cached_result is not None
and isinstance(cached_result, list)
and litellm.cache is not None
and not isinstance(
litellm.cache.cache, S3Cache
) # s3 doesn't support bulk writing. Exclude.
):
(
final_embedding_cached_response,
embedding_all_elements_cache_hit,
) = self._process_async_embedding_cached_response(
final_embedding_cached_response=final_embedding_cached_response,
cached_result=cached_result,
kwargs=kwargs,
logging_obj=logging_obj,
start_time=start_time,
model=model,
)
return CachingHandlerResponse(
final_embedding_cached_response=final_embedding_cached_response,
embedding_all_elements_cache_hit=embedding_all_elements_cache_hit,
)
verbose_logger.debug(f"CACHE RESULT: {cached_result}")
return CachingHandlerResponse(
cached_result=cached_result,
final_embedding_cached_response=final_embedding_cached_response,
)
def _sync_get_cache(
self,
model: str,
original_function: Callable,
logging_obj: LiteLLMLoggingObj,
start_time: datetime.datetime,
call_type: str,
kwargs: Dict[str, Any],
args: Optional[Tuple[Any, ...]] = None,
) -> CachingHandlerResponse:
from litellm.utils import CustomStreamWrapper
args = args or ()
new_kwargs = kwargs.copy()
new_kwargs.update(
convert_args_to_kwargs(
self.original_function,
args,
)
)
cached_result: Optional[Any] = None
if litellm.cache is not None and self._is_call_type_supported_by_cache(
original_function=original_function
):
print_verbose("Checking Cache")
cached_result = litellm.cache.get_cache(**new_kwargs)
if cached_result is not None:
if "detail" in cached_result:
# implies an error occurred
pass
else:
call_type = original_function.__name__
cached_result = self._convert_cached_result_to_model_response(
cached_result=cached_result,
call_type=call_type,
kwargs=kwargs,
logging_obj=logging_obj,
model=model,
custom_llm_provider=kwargs.get("custom_llm_provider", None),
args=args,
)
# LOG SUCCESS
cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model=model or "",
custom_llm_provider=kwargs.get("custom_llm_provider", None),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
self._update_litellm_logging_obj_environment(
logging_obj=logging_obj,
model=model,
kwargs=kwargs,
cached_result=cached_result,
is_async=False,
)
threading.Thread(
target=logging_obj.success_handler,
args=(cached_result, start_time, end_time, cache_hit),
).start()
cache_key = litellm.cache._get_preset_cache_key_from_kwargs(
**kwargs
)
if (
isinstance(cached_result, BaseModel)
or isinstance(cached_result, CustomStreamWrapper)
) and hasattr(cached_result, "_hidden_params"):
cached_result._hidden_params["cache_key"] = cache_key # type: ignore
return CachingHandlerResponse(cached_result=cached_result)
return CachingHandlerResponse(cached_result=cached_result)
def _process_async_embedding_cached_response(
self,
final_embedding_cached_response: Optional[EmbeddingResponse],
cached_result: List[Optional[Dict[str, Any]]],
kwargs: Dict[str, Any],
logging_obj: LiteLLMLoggingObj,
start_time: datetime.datetime,
model: str,
) -> Tuple[Optional[EmbeddingResponse], bool]:
"""
Returns the final embedding cached response and a boolean indicating if all elements in the list have a cache hit
For embedding responses, there can be a cache hit for some of the inputs in the list and a cache miss for others
This function processes the cached embedding responses and returns the final embedding cached response and a boolean indicating if all elements in the list have a cache hit
Args:
final_embedding_cached_response: Optional[EmbeddingResponse]:
cached_result: List[Optional[Dict[str, Any]]]:
kwargs: Dict[str, Any]:
logging_obj: LiteLLMLoggingObj:
start_time: datetime.datetime:
model: str:
Returns:
Tuple[Optional[EmbeddingResponse], bool]:
Returns the final embedding cached response and a boolean indicating if all elements in the list have a cache hit
"""
embedding_all_elements_cache_hit: bool = False
remaining_list = []
non_null_list = []
for idx, cr in enumerate(cached_result):
if cr is None:
remaining_list.append(kwargs["input"][idx])
else:
non_null_list.append((idx, cr))
original_kwargs_input = kwargs["input"]
kwargs["input"] = remaining_list
if len(non_null_list) > 0:
print_verbose(f"EMBEDDING CACHE HIT! - {len(non_null_list)}")
final_embedding_cached_response = EmbeddingResponse(
model=kwargs.get("model"),
data=[None] * len(original_kwargs_input),
)
final_embedding_cached_response._hidden_params["cache_hit"] = True
for val in non_null_list:
idx, cr = val # (idx, cr) tuple
if cr is not None:
final_embedding_cached_response.data[idx] = Embedding(
embedding=cr["embedding"],
index=idx,
object="embedding",
)
if len(remaining_list) == 0:
# LOG SUCCESS
cache_hit = True
embedding_all_elements_cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model=model,
custom_llm_provider=kwargs.get("custom_llm_provider", None),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
self._update_litellm_logging_obj_environment(
logging_obj=logging_obj,
model=model,
kwargs=kwargs,
cached_result=final_embedding_cached_response,
is_async=True,
is_embedding=True,
)
self._async_log_cache_hit_on_callbacks(
logging_obj=logging_obj,
cached_result=final_embedding_cached_response,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
)
return final_embedding_cached_response, embedding_all_elements_cache_hit
return final_embedding_cached_response, embedding_all_elements_cache_hit
def _combine_cached_embedding_response_with_api_result(
self,
_caching_handler_response: CachingHandlerResponse,
embedding_response: EmbeddingResponse,
start_time: datetime.datetime,
end_time: datetime.datetime,
) -> EmbeddingResponse:
"""
Combines the cached embedding response with the API EmbeddingResponse
For caching there can be a cache hit for some of the inputs in the list and a cache miss for others
This function combines the cached embedding response with the API EmbeddingResponse
Args:
caching_handler_response: CachingHandlerResponse:
embedding_response: EmbeddingResponse:
Returns:
EmbeddingResponse:
"""
if _caching_handler_response.final_embedding_cached_response is None:
return embedding_response
idx = 0
final_data_list = []
for item in _caching_handler_response.final_embedding_cached_response.data:
if item is None and embedding_response.data is not None:
final_data_list.append(embedding_response.data[idx])
idx += 1
else:
final_data_list.append(item)
_caching_handler_response.final_embedding_cached_response.data = final_data_list
_caching_handler_response.final_embedding_cached_response._hidden_params[
"cache_hit"
] = True
_caching_handler_response.final_embedding_cached_response._response_ms = (
end_time - start_time
).total_seconds() * 1000
return _caching_handler_response.final_embedding_cached_response
def _async_log_cache_hit_on_callbacks(
self,
logging_obj: LiteLLMLoggingObj,
cached_result: Any,
start_time: datetime.datetime,
end_time: datetime.datetime,
cache_hit: bool,
):
"""
Helper function to log the success of a cached result on callbacks
Args:
logging_obj (LiteLLMLoggingObj): The logging object.
cached_result: The cached result.
start_time (datetime): The start time of the operation.
end_time (datetime): The end time of the operation.
cache_hit (bool): Whether it was a cache hit.
"""
asyncio.create_task(
logging_obj.async_success_handler(
cached_result, start_time, end_time, cache_hit
)
)
threading.Thread(
target=logging_obj.success_handler,
args=(cached_result, start_time, end_time, cache_hit),
).start()
async def _retrieve_from_cache(
self, call_type: str, kwargs: Dict[str, Any], args: Tuple[Any, ...]
) -> Optional[Any]:
"""
Internal method to
- get cache key
- check what type of cache is used - Redis, RedisSemantic, Qdrant, S3
- async get cache value
- return the cached value
Args:
call_type: str:
kwargs: Dict[str, Any]:
args: Optional[Tuple[Any, ...]] = None:
Returns:
Optional[Any]:
Raises:
None
"""
if litellm.cache is None:
return None
new_kwargs = kwargs.copy()
new_kwargs.update(
convert_args_to_kwargs(
self.original_function,
args,
)
)
cached_result: Optional[Any] = None
if call_type == CallTypes.aembedding.value and isinstance(
new_kwargs["input"], list
):
tasks = []
for idx, i in enumerate(new_kwargs["input"]):
preset_cache_key = litellm.cache.get_cache_key(
**{**new_kwargs, "input": i}
)
tasks.append(litellm.cache.async_get_cache(cache_key=preset_cache_key))
cached_result = await asyncio.gather(*tasks)
## check if cached result is None ##
if cached_result is not None and isinstance(cached_result, list):
# set cached_result to None if all elements are None
if all(result is None for result in cached_result):
cached_result = None
else:
if litellm.cache._supports_async() is True:
cached_result = await litellm.cache.async_get_cache(**new_kwargs)
else: # for s3 caching. [NOT RECOMMENDED IN PROD - this will slow down responses since boto3 is sync]
cached_result = litellm.cache.get_cache(**new_kwargs)
return cached_result
def _convert_cached_result_to_model_response(
self,
cached_result: Any,
call_type: str,
kwargs: Dict[str, Any],
logging_obj: LiteLLMLoggingObj,
model: str,
args: Tuple[Any, ...],
custom_llm_provider: Optional[str] = None,
) -> Optional[
Union[
ModelResponse,
TextCompletionResponse,
EmbeddingResponse,
RerankResponse,
TranscriptionResponse,
CustomStreamWrapper,
]
]:
"""
Internal method to process the cached result
Checks the call type and converts the cached result to the appropriate model response object
example if call type is text_completion -> returns TextCompletionResponse object
Args:
cached_result: Any:
call_type: str:
kwargs: Dict[str, Any]:
logging_obj: LiteLLMLoggingObj:
model: str:
custom_llm_provider: Optional[str] = None:
args: Optional[Tuple[Any, ...]] = None:
Returns:
Optional[Any]:
"""
from litellm.utils import convert_to_model_response_object
if (
call_type == CallTypes.acompletion.value
or call_type == CallTypes.completion.value
) and isinstance(cached_result, dict):
if kwargs.get("stream", False) is True:
cached_result = self._convert_cached_stream_response(
cached_result=cached_result,
call_type=call_type,
logging_obj=logging_obj,
model=model,
)
else:
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=ModelResponse(),
)
if (
call_type == CallTypes.atext_completion.value
or call_type == CallTypes.text_completion.value
) and isinstance(cached_result, dict):
if kwargs.get("stream", False) is True:
cached_result = self._convert_cached_stream_response(
cached_result=cached_result,
call_type=call_type,
logging_obj=logging_obj,
model=model,
)
else:
cached_result = TextCompletionResponse(**cached_result)
elif (
call_type == CallTypes.aembedding.value
or call_type == CallTypes.embedding.value
) and isinstance(cached_result, dict):
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=EmbeddingResponse(),
response_type="embedding",
)
elif (
call_type == CallTypes.arerank.value or call_type == CallTypes.rerank.value
) and isinstance(cached_result, dict):
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=None,
response_type="rerank",
)
elif (
call_type == CallTypes.atranscription.value
or call_type == CallTypes.transcription.value
) and isinstance(cached_result, dict):
hidden_params = {
"model": "whisper-1",
"custom_llm_provider": custom_llm_provider,
"cache_hit": True,
}
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=TranscriptionResponse(),
response_type="audio_transcription",
hidden_params=hidden_params,
)
if (
hasattr(cached_result, "_hidden_params")
and cached_result._hidden_params is not None
and isinstance(cached_result._hidden_params, dict)
):
cached_result._hidden_params["cache_hit"] = True
return cached_result
def _convert_cached_stream_response(
self,
cached_result: Any,
call_type: str,
logging_obj: LiteLLMLoggingObj,
model: str,
) -> CustomStreamWrapper:
from litellm.utils import (
CustomStreamWrapper,
convert_to_streaming_response,
convert_to_streaming_response_async,
)
_stream_cached_result: Union[AsyncGenerator, Generator]
if (
call_type == CallTypes.acompletion.value
or call_type == CallTypes.atext_completion.value
):
_stream_cached_result = convert_to_streaming_response_async(
response_object=cached_result,
)
else:
_stream_cached_result = convert_to_streaming_response(
response_object=cached_result,
)
return CustomStreamWrapper(
completion_stream=_stream_cached_result,
model=model,
custom_llm_provider="cached_response",
logging_obj=logging_obj,
)
async def async_set_cache(
self,
result: Any,
original_function: Callable,
kwargs: Dict[str, Any],
args: Optional[Tuple[Any, ...]] = None,
):
"""
Internal method to check the type of the result & cache used and adds the result to the cache accordingly
Args:
result: Any:
original_function: Callable:
kwargs: Dict[str, Any]:
args: Optional[Tuple[Any, ...]] = None:
Returns:
None
Raises:
None
"""
if litellm.cache is None:
return
new_kwargs = kwargs.copy()
new_kwargs.update(
convert_args_to_kwargs(
original_function,
args,
)
)
# [OPTIONAL] ADD TO CACHE
if self._should_store_result_in_cache(
original_function=original_function, kwargs=new_kwargs
):
if (
isinstance(result, litellm.ModelResponse)
or isinstance(result, litellm.EmbeddingResponse)
or isinstance(result, TranscriptionResponse)
or isinstance(result, RerankResponse)
):
if (
isinstance(result, EmbeddingResponse)
and isinstance(new_kwargs["input"], list)
and litellm.cache is not None
and not isinstance(
litellm.cache.cache, S3Cache
) # s3 doesn't support bulk writing. Exclude.
):
asyncio.create_task(
litellm.cache.async_add_cache_pipeline(result, **new_kwargs)
)
elif isinstance(litellm.cache.cache, S3Cache):
threading.Thread(
target=litellm.cache.add_cache,
args=(result,),
kwargs=new_kwargs,
).start()
else:
asyncio.create_task(
litellm.cache.async_add_cache(
result.model_dump_json(), **new_kwargs
)
)
else:
asyncio.create_task(litellm.cache.async_add_cache(result, **new_kwargs))
def sync_set_cache(
self,
result: Any,
kwargs: Dict[str, Any],
args: Optional[Tuple[Any, ...]] = None,
):
"""
Sync internal method to add the result to the cache
"""
new_kwargs = kwargs.copy()
new_kwargs.update(
convert_args_to_kwargs(
self.original_function,
args,
)
)
if litellm.cache is None:
return
if self._should_store_result_in_cache(
original_function=self.original_function, kwargs=new_kwargs
):
litellm.cache.add_cache(result, **new_kwargs)
return
def _should_store_result_in_cache(
self, original_function: Callable, kwargs: Dict[str, Any]
) -> bool:
"""
Helper function to determine if the result should be stored in the cache.
Returns:
bool: True if the result should be stored in the cache, False otherwise.
"""
return (
(litellm.cache is not None)
and litellm.cache.supported_call_types is not None
and (str(original_function.__name__) in litellm.cache.supported_call_types)
and (kwargs.get("cache", {}).get("no-store", False) is not True)
)
def _is_call_type_supported_by_cache(
self,
original_function: Callable,
) -> bool:
"""
Helper function to determine if the call type is supported by the cache.
call types are acompletion, aembedding, atext_completion, atranscription, arerank
Defined on `litellm.types.utils.CallTypes`
Returns:
bool: True if the call type is supported by the cache, False otherwise.
"""
if (
litellm.cache is not None
and litellm.cache.supported_call_types is not None
and str(original_function.__name__) in litellm.cache.supported_call_types
):
return True
return False
async def _add_streaming_response_to_cache(self, processed_chunk: ModelResponse):
"""
Internal method to add the streaming response to the cache
- If 'streaming_chunk' has a 'finish_reason' then assemble a litellm.ModelResponse object
- Else append the chunk to self.async_streaming_chunks
"""
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = _assemble_complete_response_from_streaming_chunks(
result=processed_chunk,
start_time=self.start_time,
end_time=datetime.datetime.now(),
request_kwargs=self.request_kwargs,
streaming_chunks=self.async_streaming_chunks,
is_async=True,
)
# if a complete_streaming_response is assembled, add it to the cache
if complete_streaming_response is not None:
await self.async_set_cache(
result=complete_streaming_response,
original_function=self.original_function,
kwargs=self.request_kwargs,
)
def _sync_add_streaming_response_to_cache(self, processed_chunk: ModelResponse):
"""
Sync internal method to add the streaming response to the cache
"""
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = _assemble_complete_response_from_streaming_chunks(
result=processed_chunk,
start_time=self.start_time,
end_time=datetime.datetime.now(),
request_kwargs=self.request_kwargs,
streaming_chunks=self.sync_streaming_chunks,
is_async=False,
)
# if a complete_streaming_response is assembled, add it to the cache
if complete_streaming_response is not None:
self.sync_set_cache(
result=complete_streaming_response,
kwargs=self.request_kwargs,
)
def _update_litellm_logging_obj_environment(
self,
logging_obj: LiteLLMLoggingObj,
model: str,
kwargs: Dict[str, Any],
cached_result: Any,
is_async: bool,
is_embedding: bool = False,
):
"""
Helper function to update the LiteLLMLoggingObj environment variables.
Args:
logging_obj (LiteLLMLoggingObj): The logging object to update.
model (str): The model being used.
kwargs (Dict[str, Any]): The keyword arguments from the original function call.
cached_result (Any): The cached result to log.
is_async (bool): Whether the call is asynchronous or not.
is_embedding (bool): Whether the call is for embeddings or not.
Returns:
None
"""
litellm_params = {
"logger_fn": kwargs.get("logger_fn", None),
"acompletion": is_async,
"api_base": kwargs.get("api_base", ""),
"metadata": kwargs.get("metadata", {}),
"model_info": kwargs.get("model_info", {}),
"proxy_server_request": kwargs.get("proxy_server_request", None),
"stream_response": kwargs.get("stream_response", {}),
}
if litellm.cache is not None:
litellm_params["preset_cache_key"] = (
litellm.cache._get_preset_cache_key_from_kwargs(**kwargs)
)
else:
litellm_params["preset_cache_key"] = None
logging_obj.update_environment_variables(
model=model,
user=kwargs.get("user", None),
optional_params={},
litellm_params=litellm_params,
input=(
kwargs.get("messages", "")
if not is_embedding
else kwargs.get("input", "")
),
api_key=kwargs.get("api_key", None),
original_response=str(cached_result),
additional_args=None,
stream=kwargs.get("stream", False),
)
def convert_args_to_kwargs(
original_function: Callable,
args: Optional[Tuple[Any, ...]] = None,
) -> Dict[str, Any]:
# Get the signature of the original function
signature = inspect.signature(original_function)
# Get parameter names in the order they appear in the original function
param_names = list(signature.parameters.keys())
# Create a mapping of positional arguments to parameter names
args_to_kwargs = {}
if args:
for index, arg in enumerate(args):
if index < len(param_names):
param_name = param_names[index]
args_to_kwargs[param_name] = arg
return args_to_kwargs
|