File size: 33,900 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
# +-----------------------------------------------+
# | |
# | Give Feedback / Get Help |
# | https://github.com/BerriAI/litellm/issues/new |
# | |
# +-----------------------------------------------+
#
# Thank you users! We ❤️ you! - Krrish & Ishaan
import ast
import hashlib
import json
import time
import traceback
from enum import Enum
from typing import Any, Dict, List, Optional, Set, Union
from openai.types.audio.transcription_create_params import TranscriptionCreateParams
from openai.types.chat.completion_create_params import (
CompletionCreateParamsNonStreaming,
CompletionCreateParamsStreaming,
)
from openai.types.completion_create_params import (
CompletionCreateParamsNonStreaming as TextCompletionCreateParamsNonStreaming,
)
from openai.types.completion_create_params import (
CompletionCreateParamsStreaming as TextCompletionCreateParamsStreaming,
)
from openai.types.embedding_create_params import EmbeddingCreateParams
from pydantic import BaseModel
import litellm
from litellm._logging import verbose_logger
from litellm.types.caching import *
from litellm.types.rerank import RerankRequest
from litellm.types.utils import all_litellm_params
from .base_cache import BaseCache
from .disk_cache import DiskCache
from .dual_cache import DualCache # noqa
from .in_memory_cache import InMemoryCache
from .qdrant_semantic_cache import QdrantSemanticCache
from .redis_cache import RedisCache
from .redis_semantic_cache import RedisSemanticCache
from .s3_cache import S3Cache
def print_verbose(print_statement):
try:
verbose_logger.debug(print_statement)
if litellm.set_verbose:
print(print_statement) # noqa
except Exception:
pass
class CacheMode(str, Enum):
default_on = "default_on"
default_off = "default_off"
#### LiteLLM.Completion / Embedding Cache ####
class Cache:
def __init__(
self,
type: Optional[LiteLLMCacheType] = LiteLLMCacheType.LOCAL,
mode: Optional[
CacheMode
] = CacheMode.default_on, # when default_on cache is always on, when default_off cache is opt in
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
namespace: Optional[str] = None,
ttl: Optional[float] = None,
default_in_memory_ttl: Optional[float] = None,
default_in_redis_ttl: Optional[float] = None,
similarity_threshold: Optional[float] = None,
supported_call_types: Optional[List[CachingSupportedCallTypes]] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
"atext_completion",
"text_completion",
"arerank",
"rerank",
],
# s3 Bucket, boto3 configuration
s3_bucket_name: Optional[str] = None,
s3_region_name: Optional[str] = None,
s3_api_version: Optional[str] = None,
s3_use_ssl: Optional[bool] = True,
s3_verify: Optional[Union[bool, str]] = None,
s3_endpoint_url: Optional[str] = None,
s3_aws_access_key_id: Optional[str] = None,
s3_aws_secret_access_key: Optional[str] = None,
s3_aws_session_token: Optional[str] = None,
s3_config: Optional[Any] = None,
s3_path: Optional[str] = None,
redis_semantic_cache_use_async=False,
redis_semantic_cache_embedding_model="text-embedding-ada-002",
redis_flush_size: Optional[int] = None,
redis_startup_nodes: Optional[List] = None,
disk_cache_dir=None,
qdrant_api_base: Optional[str] = None,
qdrant_api_key: Optional[str] = None,
qdrant_collection_name: Optional[str] = None,
qdrant_quantization_config: Optional[str] = None,
qdrant_semantic_cache_embedding_model="text-embedding-ada-002",
**kwargs,
):
"""
Initializes the cache based on the given type.
Args:
type (str, optional): The type of cache to initialize. Can be "local", "redis", "redis-semantic", "qdrant-semantic", "s3" or "disk". Defaults to "local".
# Redis Cache Args
host (str, optional): The host address for the Redis cache. Required if type is "redis".
port (int, optional): The port number for the Redis cache. Required if type is "redis".
password (str, optional): The password for the Redis cache. Required if type is "redis".
namespace (str, optional): The namespace for the Redis cache. Required if type is "redis".
ttl (float, optional): The ttl for the Redis cache
redis_flush_size (int, optional): The number of keys to flush at a time. Defaults to 1000. Only used if batch redis set caching is used.
redis_startup_nodes (list, optional): The list of startup nodes for the Redis cache. Defaults to None.
# Qdrant Cache Args
qdrant_api_base (str, optional): The url for your qdrant cluster. Required if type is "qdrant-semantic".
qdrant_api_key (str, optional): The api_key for the local or cloud qdrant cluster.
qdrant_collection_name (str, optional): The name for your qdrant collection. Required if type is "qdrant-semantic".
similarity_threshold (float, optional): The similarity threshold for semantic-caching, Required if type is "redis-semantic" or "qdrant-semantic".
# Disk Cache Args
disk_cache_dir (str, optional): The directory for the disk cache. Defaults to None.
# S3 Cache Args
s3_bucket_name (str, optional): The bucket name for the s3 cache. Defaults to None.
s3_region_name (str, optional): The region name for the s3 cache. Defaults to None.
s3_api_version (str, optional): The api version for the s3 cache. Defaults to None.
s3_use_ssl (bool, optional): The use ssl for the s3 cache. Defaults to True.
s3_verify (bool, optional): The verify for the s3 cache. Defaults to None.
s3_endpoint_url (str, optional): The endpoint url for the s3 cache. Defaults to None.
s3_aws_access_key_id (str, optional): The aws access key id for the s3 cache. Defaults to None.
s3_aws_secret_access_key (str, optional): The aws secret access key for the s3 cache. Defaults to None.
s3_aws_session_token (str, optional): The aws session token for the s3 cache. Defaults to None.
s3_config (dict, optional): The config for the s3 cache. Defaults to None.
# Common Cache Args
supported_call_types (list, optional): List of call types to cache for. Defaults to cache == on for all call types.
**kwargs: Additional keyword arguments for redis.Redis() cache
Raises:
ValueError: If an invalid cache type is provided.
Returns:
None. Cache is set as a litellm param
"""
if type == LiteLLMCacheType.REDIS:
self.cache: BaseCache = RedisCache(
host=host,
port=port,
password=password,
redis_flush_size=redis_flush_size,
startup_nodes=redis_startup_nodes,
**kwargs,
)
elif type == LiteLLMCacheType.REDIS_SEMANTIC:
self.cache = RedisSemanticCache(
host=host,
port=port,
password=password,
similarity_threshold=similarity_threshold,
use_async=redis_semantic_cache_use_async,
embedding_model=redis_semantic_cache_embedding_model,
**kwargs,
)
elif type == LiteLLMCacheType.QDRANT_SEMANTIC:
self.cache = QdrantSemanticCache(
qdrant_api_base=qdrant_api_base,
qdrant_api_key=qdrant_api_key,
collection_name=qdrant_collection_name,
similarity_threshold=similarity_threshold,
quantization_config=qdrant_quantization_config,
embedding_model=qdrant_semantic_cache_embedding_model,
)
elif type == LiteLLMCacheType.LOCAL:
self.cache = InMemoryCache()
elif type == LiteLLMCacheType.S3:
self.cache = S3Cache(
s3_bucket_name=s3_bucket_name,
s3_region_name=s3_region_name,
s3_api_version=s3_api_version,
s3_use_ssl=s3_use_ssl,
s3_verify=s3_verify,
s3_endpoint_url=s3_endpoint_url,
s3_aws_access_key_id=s3_aws_access_key_id,
s3_aws_secret_access_key=s3_aws_secret_access_key,
s3_aws_session_token=s3_aws_session_token,
s3_config=s3_config,
s3_path=s3_path,
**kwargs,
)
elif type == LiteLLMCacheType.DISK:
self.cache = DiskCache(disk_cache_dir=disk_cache_dir)
if "cache" not in litellm.input_callback:
litellm.input_callback.append("cache")
if "cache" not in litellm.success_callback:
litellm.logging_callback_manager.add_litellm_success_callback("cache")
if "cache" not in litellm._async_success_callback:
litellm.logging_callback_manager.add_litellm_async_success_callback("cache")
self.supported_call_types = supported_call_types # default to ["completion", "acompletion", "embedding", "aembedding"]
self.type = type
self.namespace = namespace
self.redis_flush_size = redis_flush_size
self.ttl = ttl
self.mode: CacheMode = mode or CacheMode.default_on
if self.type == LiteLLMCacheType.LOCAL and default_in_memory_ttl is not None:
self.ttl = default_in_memory_ttl
if (
self.type == LiteLLMCacheType.REDIS
or self.type == LiteLLMCacheType.REDIS_SEMANTIC
) and default_in_redis_ttl is not None:
self.ttl = default_in_redis_ttl
if self.namespace is not None and isinstance(self.cache, RedisCache):
self.cache.namespace = self.namespace
def get_cache_key(self, **kwargs) -> str:
"""
Get the cache key for the given arguments.
Args:
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
str: The cache key generated from the arguments, or None if no cache key could be generated.
"""
cache_key = ""
# verbose_logger.debug("\nGetting Cache key. Kwargs: %s", kwargs)
preset_cache_key = self._get_preset_cache_key_from_kwargs(**kwargs)
if preset_cache_key is not None:
verbose_logger.debug("\nReturning preset cache key: %s", preset_cache_key)
return preset_cache_key
combined_kwargs = self._get_relevant_args_to_use_for_cache_key()
litellm_param_kwargs = all_litellm_params
for param in kwargs:
if param in combined_kwargs:
param_value: Optional[str] = self._get_param_value(param, kwargs)
if param_value is not None:
cache_key += f"{str(param)}: {str(param_value)}"
elif (
param not in litellm_param_kwargs
): # check if user passed in optional param - e.g. top_k
if (
litellm.enable_caching_on_provider_specific_optional_params is True
): # feature flagged for now
if kwargs[param] is None:
continue # ignore None params
param_value = kwargs[param]
cache_key += f"{str(param)}: {str(param_value)}"
verbose_logger.debug("\nCreated cache key: %s", cache_key)
hashed_cache_key = Cache._get_hashed_cache_key(cache_key)
hashed_cache_key = self._add_redis_namespace_to_cache_key(
hashed_cache_key, **kwargs
)
self._set_preset_cache_key_in_kwargs(
preset_cache_key=hashed_cache_key, **kwargs
)
return hashed_cache_key
def _get_param_value(
self,
param: str,
kwargs: dict,
) -> Optional[str]:
"""
Get the value for the given param from kwargs
"""
if param == "model":
return self._get_model_param_value(kwargs)
elif param == "file":
return self._get_file_param_value(kwargs)
return kwargs[param]
def _get_model_param_value(self, kwargs: dict) -> str:
"""
Handles getting the value for the 'model' param from kwargs
1. If caching groups are set, then return the caching group as the model https://docs.litellm.ai/docs/routing#caching-across-model-groups
2. Else if a model_group is set, then return the model_group as the model. This is used for all requests sent through the litellm.Router()
3. Else use the `model` passed in kwargs
"""
metadata: Dict = kwargs.get("metadata", {}) or {}
litellm_params: Dict = kwargs.get("litellm_params", {}) or {}
metadata_in_litellm_params: Dict = litellm_params.get("metadata", {}) or {}
model_group: Optional[str] = metadata.get(
"model_group"
) or metadata_in_litellm_params.get("model_group")
caching_group = self._get_caching_group(metadata, model_group)
return caching_group or model_group or kwargs["model"]
def _get_caching_group(
self, metadata: dict, model_group: Optional[str]
) -> Optional[str]:
caching_groups: Optional[List] = metadata.get("caching_groups", [])
if caching_groups:
for group in caching_groups:
if model_group in group:
return str(group)
return None
def _get_file_param_value(self, kwargs: dict) -> str:
"""
Handles getting the value for the 'file' param from kwargs. Used for `transcription` requests
"""
file = kwargs.get("file")
metadata = kwargs.get("metadata", {})
litellm_params = kwargs.get("litellm_params", {})
return (
metadata.get("file_checksum")
or getattr(file, "name", None)
or metadata.get("file_name")
or litellm_params.get("file_name")
)
def _get_preset_cache_key_from_kwargs(self, **kwargs) -> Optional[str]:
"""
Get the preset cache key from kwargs["litellm_params"]
We use _get_preset_cache_keys for two reasons
1. optional params like max_tokens, get transformed for bedrock -> max_new_tokens
2. avoid doing duplicate / repeated work
"""
if kwargs:
if "litellm_params" in kwargs:
return kwargs["litellm_params"].get("preset_cache_key", None)
return None
def _set_preset_cache_key_in_kwargs(self, preset_cache_key: str, **kwargs) -> None:
"""
Set the calculated cache key in kwargs
This is used to avoid doing duplicate / repeated work
Placed in kwargs["litellm_params"]
"""
if kwargs:
if "litellm_params" in kwargs:
kwargs["litellm_params"]["preset_cache_key"] = preset_cache_key
def _get_relevant_args_to_use_for_cache_key(self) -> Set[str]:
"""
Gets the supported kwargs for each call type and combines them
"""
chat_completion_kwargs = self._get_litellm_supported_chat_completion_kwargs()
text_completion_kwargs = self._get_litellm_supported_text_completion_kwargs()
embedding_kwargs = self._get_litellm_supported_embedding_kwargs()
transcription_kwargs = self._get_litellm_supported_transcription_kwargs()
rerank_kwargs = self._get_litellm_supported_rerank_kwargs()
exclude_kwargs = self._get_kwargs_to_exclude_from_cache_key()
combined_kwargs = chat_completion_kwargs.union(
text_completion_kwargs,
embedding_kwargs,
transcription_kwargs,
rerank_kwargs,
)
combined_kwargs = combined_kwargs.difference(exclude_kwargs)
return combined_kwargs
def _get_litellm_supported_chat_completion_kwargs(self) -> Set[str]:
"""
Get the litellm supported chat completion kwargs
This follows the OpenAI API Spec
"""
all_chat_completion_kwargs = set(
CompletionCreateParamsNonStreaming.__annotations__.keys()
).union(set(CompletionCreateParamsStreaming.__annotations__.keys()))
return all_chat_completion_kwargs
def _get_litellm_supported_text_completion_kwargs(self) -> Set[str]:
"""
Get the litellm supported text completion kwargs
This follows the OpenAI API Spec
"""
all_text_completion_kwargs = set(
TextCompletionCreateParamsNonStreaming.__annotations__.keys()
).union(set(TextCompletionCreateParamsStreaming.__annotations__.keys()))
return all_text_completion_kwargs
def _get_litellm_supported_rerank_kwargs(self) -> Set[str]:
"""
Get the litellm supported rerank kwargs
"""
return set(RerankRequest.model_fields.keys())
def _get_litellm_supported_embedding_kwargs(self) -> Set[str]:
"""
Get the litellm supported embedding kwargs
This follows the OpenAI API Spec
"""
return set(EmbeddingCreateParams.__annotations__.keys())
def _get_litellm_supported_transcription_kwargs(self) -> Set[str]:
"""
Get the litellm supported transcription kwargs
This follows the OpenAI API Spec
"""
return set(TranscriptionCreateParams.__annotations__.keys())
def _get_kwargs_to_exclude_from_cache_key(self) -> Set[str]:
"""
Get the kwargs to exclude from the cache key
"""
return set(["metadata"])
@staticmethod
def _get_hashed_cache_key(cache_key: str) -> str:
"""
Get the hashed cache key for the given cache key.
Use hashlib to create a sha256 hash of the cache key
Args:
cache_key (str): The cache key to hash.
Returns:
str: The hashed cache key.
"""
hash_object = hashlib.sha256(cache_key.encode())
# Hexadecimal representation of the hash
hash_hex = hash_object.hexdigest()
verbose_logger.debug("Hashed cache key (SHA-256): %s", hash_hex)
return hash_hex
def _add_redis_namespace_to_cache_key(self, hash_hex: str, **kwargs) -> str:
"""
If a redis namespace is provided, add it to the cache key
Args:
hash_hex (str): The hashed cache key.
**kwargs: Additional keyword arguments.
Returns:
str: The final hashed cache key with the redis namespace.
"""
namespace = kwargs.get("metadata", {}).get("redis_namespace") or self.namespace
if namespace:
hash_hex = f"{namespace}:{hash_hex}"
verbose_logger.debug("Final hashed key: %s", hash_hex)
return hash_hex
def generate_streaming_content(self, content):
chunk_size = 5 # Adjust the chunk size as needed
for i in range(0, len(content), chunk_size):
yield {
"choices": [
{
"delta": {
"role": "assistant",
"content": content[i : i + chunk_size],
}
}
]
}
time.sleep(0.02)
def _get_cache_logic(
self,
cached_result: Optional[Any],
max_age: Optional[float],
):
"""
Common get cache logic across sync + async implementations
"""
# Check if a timestamp was stored with the cached response
if (
cached_result is not None
and isinstance(cached_result, dict)
and "timestamp" in cached_result
):
timestamp = cached_result["timestamp"]
current_time = time.time()
# Calculate age of the cached response
response_age = current_time - timestamp
# Check if the cached response is older than the max-age
if max_age is not None and response_age > max_age:
return None # Cached response is too old
# If the response is fresh, or there's no max-age requirement, return the cached response
# cached_response is in `b{} convert it to ModelResponse
cached_response = cached_result.get("response")
try:
if isinstance(cached_response, dict):
pass
else:
cached_response = json.loads(
cached_response # type: ignore
) # Convert string to dictionary
except Exception:
cached_response = ast.literal_eval(cached_response) # type: ignore
return cached_response
return cached_result
def get_cache(self, **kwargs):
"""
Retrieves the cached result for the given arguments.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
The cached result if it exists, otherwise None.
"""
try: # never block execution
if self.should_use_cache(**kwargs) is not True:
return
messages = kwargs.get("messages", [])
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(**kwargs)
if cache_key is not None:
cache_control_args = kwargs.get("cache", {})
max_age = cache_control_args.get(
"s-max-age", cache_control_args.get("s-maxage", float("inf"))
)
cached_result = self.cache.get_cache(cache_key, messages=messages)
return self._get_cache_logic(
cached_result=cached_result, max_age=max_age
)
except Exception:
print_verbose(f"An exception occurred: {traceback.format_exc()}")
return None
async def async_get_cache(self, **kwargs):
"""
Async get cache implementation.
Used for embedding calls in async wrapper
"""
try: # never block execution
if self.should_use_cache(**kwargs) is not True:
return
kwargs.get("messages", [])
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(**kwargs)
if cache_key is not None:
cache_control_args = kwargs.get("cache", {})
max_age = cache_control_args.get(
"s-max-age", cache_control_args.get("s-maxage", float("inf"))
)
cached_result = await self.cache.async_get_cache(cache_key, **kwargs)
return self._get_cache_logic(
cached_result=cached_result, max_age=max_age
)
except Exception:
print_verbose(f"An exception occurred: {traceback.format_exc()}")
return None
def _add_cache_logic(self, result, **kwargs):
"""
Common implementation across sync + async add_cache functions
"""
try:
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(**kwargs)
if cache_key is not None:
if isinstance(result, BaseModel):
result = result.model_dump_json()
## DEFAULT TTL ##
if self.ttl is not None:
kwargs["ttl"] = self.ttl
## Get Cache-Controls ##
_cache_kwargs = kwargs.get("cache", None)
if isinstance(_cache_kwargs, dict):
for k, v in _cache_kwargs.items():
if k == "ttl":
kwargs["ttl"] = v
cached_data = {"timestamp": time.time(), "response": result}
return cache_key, cached_data, kwargs
else:
raise Exception("cache key is None")
except Exception as e:
raise e
def add_cache(self, result, **kwargs):
"""
Adds a result to the cache.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
None
"""
try:
if self.should_use_cache(**kwargs) is not True:
return
cache_key, cached_data, kwargs = self._add_cache_logic(
result=result, **kwargs
)
self.cache.set_cache(cache_key, cached_data, **kwargs)
except Exception as e:
verbose_logger.exception(f"LiteLLM Cache: Excepton add_cache: {str(e)}")
async def async_add_cache(self, result, **kwargs):
"""
Async implementation of add_cache
"""
try:
if self.should_use_cache(**kwargs) is not True:
return
if self.type == "redis" and self.redis_flush_size is not None:
# high traffic - fill in results in memory and then flush
await self.batch_cache_write(result, **kwargs)
else:
cache_key, cached_data, kwargs = self._add_cache_logic(
result=result, **kwargs
)
await self.cache.async_set_cache(cache_key, cached_data, **kwargs)
except Exception as e:
verbose_logger.exception(f"LiteLLM Cache: Excepton add_cache: {str(e)}")
async def async_add_cache_pipeline(self, result, **kwargs):
"""
Async implementation of add_cache for Embedding calls
Does a bulk write, to prevent using too many clients
"""
try:
if self.should_use_cache(**kwargs) is not True:
return
# set default ttl if not set
if self.ttl is not None:
kwargs["ttl"] = self.ttl
cache_list = []
for idx, i in enumerate(kwargs["input"]):
preset_cache_key = self.get_cache_key(**{**kwargs, "input": i})
kwargs["cache_key"] = preset_cache_key
embedding_response = result.data[idx]
cache_key, cached_data, kwargs = self._add_cache_logic(
result=embedding_response,
**kwargs,
)
cache_list.append((cache_key, cached_data))
await self.cache.async_set_cache_pipeline(cache_list=cache_list, **kwargs)
# if async_set_cache_pipeline:
# await async_set_cache_pipeline(cache_list=cache_list, **kwargs)
# else:
# tasks = []
# for val in cache_list:
# tasks.append(self.cache.async_set_cache(val[0], val[1], **kwargs))
# await asyncio.gather(*tasks)
except Exception as e:
verbose_logger.exception(f"LiteLLM Cache: Excepton add_cache: {str(e)}")
def should_use_cache(self, **kwargs):
"""
Returns true if we should use the cache for LLM API calls
If cache is default_on then this is True
If cache is default_off then this is only true when user has opted in to use cache
"""
if self.mode == CacheMode.default_on:
return True
# when mode == default_off -> Cache is opt in only
_cache = kwargs.get("cache", None)
verbose_logger.debug("should_use_cache: kwargs: %s; _cache: %s", kwargs, _cache)
if _cache and isinstance(_cache, dict):
if _cache.get("use-cache", False) is True:
return True
return False
async def batch_cache_write(self, result, **kwargs):
cache_key, cached_data, kwargs = self._add_cache_logic(result=result, **kwargs)
await self.cache.batch_cache_write(cache_key, cached_data, **kwargs)
async def ping(self):
cache_ping = getattr(self.cache, "ping")
if cache_ping:
return await cache_ping()
return None
async def delete_cache_keys(self, keys):
cache_delete_cache_keys = getattr(self.cache, "delete_cache_keys")
if cache_delete_cache_keys:
return await cache_delete_cache_keys(keys)
return None
async def disconnect(self):
if hasattr(self.cache, "disconnect"):
await self.cache.disconnect()
def _supports_async(self) -> bool:
"""
Internal method to check if the cache type supports async get/set operations
Only S3 Cache Does NOT support async operations
"""
if self.type and self.type == LiteLLMCacheType.S3:
return False
return True
def enable_cache(
type: Optional[LiteLLMCacheType] = LiteLLMCacheType.LOCAL,
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[List[CachingSupportedCallTypes]] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
"atext_completion",
"text_completion",
"arerank",
"rerank",
],
**kwargs,
):
"""
Enable cache with the specified configuration.
Args:
type (Optional[Literal["local", "redis", "s3", "disk"]]): The type of cache to enable. Defaults to "local".
host (Optional[str]): The host address of the cache server. Defaults to None.
port (Optional[str]): The port number of the cache server. Defaults to None.
password (Optional[str]): The password for the cache server. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments.
Returns:
None
Raises:
None
"""
print_verbose("LiteLLM: Enabling Cache")
if "cache" not in litellm.input_callback:
litellm.input_callback.append("cache")
if "cache" not in litellm.success_callback:
litellm.logging_callback_manager.add_litellm_success_callback("cache")
if "cache" not in litellm._async_success_callback:
litellm.logging_callback_manager.add_litellm_async_success_callback("cache")
if litellm.cache is None:
litellm.cache = Cache(
type=type,
host=host,
port=port,
password=password,
supported_call_types=supported_call_types,
**kwargs,
)
print_verbose(f"LiteLLM: Cache enabled, litellm.cache={litellm.cache}")
print_verbose(f"LiteLLM Cache: {vars(litellm.cache)}")
def update_cache(
type: Optional[LiteLLMCacheType] = LiteLLMCacheType.LOCAL,
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[List[CachingSupportedCallTypes]] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
"atext_completion",
"text_completion",
"arerank",
"rerank",
],
**kwargs,
):
"""
Update the cache for LiteLLM.
Args:
type (Optional[Literal["local", "redis", "s3", "disk"]]): The type of cache. Defaults to "local".
host (Optional[str]): The host of the cache. Defaults to None.
port (Optional[str]): The port of the cache. Defaults to None.
password (Optional[str]): The password for the cache. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments for the cache.
Returns:
None
"""
print_verbose("LiteLLM: Updating Cache")
litellm.cache = Cache(
type=type,
host=host,
port=port,
password=password,
supported_call_types=supported_call_types,
**kwargs,
)
print_verbose(f"LiteLLM: Cache Updated, litellm.cache={litellm.cache}")
print_verbose(f"LiteLLM Cache: {vars(litellm.cache)}")
def disable_cache():
"""
Disable the cache used by LiteLLM.
This function disables the cache used by the LiteLLM module. It removes the cache-related callbacks from the input_callback, success_callback, and _async_success_callback lists. It also sets the litellm.cache attribute to None.
Parameters:
None
Returns:
None
"""
from contextlib import suppress
print_verbose("LiteLLM: Disabling Cache")
with suppress(ValueError):
litellm.input_callback.remove("cache")
litellm.success_callback.remove("cache")
litellm._async_success_callback.remove("cache")
litellm.cache = None
print_verbose(f"LiteLLM: Cache disabled, litellm.cache={litellm.cache}")
|