Spaces:
Runtime error
Runtime error
from flask import Flask, render_template, request, redirect, url_for, jsonify | |
from tensorflow.keras.models import load_model | |
import numpy as np | |
import joblib | |
import pandas as pd | |
import io | |
import requests | |
import threading | |
import time | |
from PIL import Image # Import for image processing | |
app = Flask(__name__) | |
# Load models | |
pump_model = joblib.load('pump_status_dt_model.pkl') | |
soil_model = load_model('soil_classification_model.h5') | |
# Dictionaries for crop types, regions, etc. | |
crop_types = {'BANANA': 0, 'BEAN': 1, 'CABBAGE': 2, 'CITRUS': 3, 'COTTON': 4, | |
'MAIZE': 5, 'MELON': 6, 'MUSTARD': 7, 'ONION': 8, 'OTHER': 9, | |
'POTATO': 10, 'RICE': 11, 'SOYABEAN': 12, 'SUGARCANE': 13, | |
'TOMATO': 14, 'WHEAT': 15} | |
soil_types = {'DRY': 0, 'HUMID': 1, 'WET': 2} | |
regions = {'DESERT': 0, 'HUMID': 1, 'SEMI ARID': 2, 'SEMI HUMID': 3} | |
weather_conditions = {'SUNNY': 0, 'RAINY': 1, 'WINDY': 2, 'NORMAL': 3} | |
irrigation_types = {'Drip Irrigation': 0, 'Manual Irrigation': 1, | |
'Sprinkler Irrigation': 2, 'Subsurface Irrigation': 3, | |
'Surface Irrigation': 4} | |
soil_labels = {1: 'Black Soil', 2: 'Clay Soil', 0: 'Alluvial Soil', 3: 'Red Soil'} | |
# Global variables | |
soil_moisture_data = [] | |
pump_status = "Off" | |
previous_pump_status = "Off" | |
graph_data = [] | |
# Function to fetch weather data | |
def get_weather(city): | |
api_key=os.getenv('WEATHER_API') | |
api_key = api_key | |
url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric" | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
data = response.json() | |
temp = data['main']['temp'] | |
pressure = data['main']['pressure'] | |
humidity = data['main']['humidity'] | |
weather_desc = data['weather'][0]['main'] | |
return temp, pressure, humidity, weather_desc | |
except requests.exceptions.HTTPError: | |
return None, None, None, None | |
# Function to map soil type to pump model's expected format | |
def map_soil_to_pump_model(soil_label): | |
if soil_label in ['Black Soil', 'Red Soil']: | |
return 'DRY' | |
elif soil_label == 'Clay Soil': | |
return 'WET' | |
elif soil_label == 'Alluvial Soil': | |
return 'HUMID' | |
return None | |
# Function to run predictions for all soil moisture values | |
# Function to run predictions for all soil moisture values | |
def run_predictions(crop_type, soil_type_for_pump, region, temperature, pressure, humidity, crop_age, irrigation_type, auto_weather_condition): | |
global pump_status, graph_data, previous_pump_status | |
pump_status = "Off" | |
previous_pump_status = "Off" | |
graph_data = [] | |
for soil_moisture in soil_moisture_data: | |
try: | |
soil_moisture_value = float(soil_moisture) # Ensure this is a float | |
except ValueError: | |
print(f"Skipping invalid soil moisture value: {soil_moisture}") | |
continue | |
# Prepare features for pump prediction | |
features = np.array([crop_types[crop_type], soil_types[soil_type_for_pump], | |
regions[region], temperature if temperature else 0, | |
weather_conditions.get(auto_weather_condition, 0), | |
pressure if pressure else 0, humidity if humidity else 0, | |
int(crop_age), irrigation_types[irrigation_type], | |
soil_moisture_value]).reshape(1, -1) | |
# Make the pump prediction | |
pump_prediction = pump_model.predict(features) | |
pump_status = 'On' if pump_prediction[0] == 1 else 'Off' | |
graph_data.append((soil_moisture_value, 1 if pump_status == 'On' else -1)) # Update status to -1 for Off | |
print(f"Predicted Pump Status: {pump_status} for Soil Moisture: {soil_moisture_value}") # Debugging output | |
# Play sound if pump is Off and it wasn't Off previously | |
if pump_status == "Off" and previous_pump_status != "Off": | |
play_sound() | |
previous_pump_status = pump_status | |
# Wait for 1 second before next prediction | |
time.sleep(2) | |
def play_sound(): | |
# You can use any sound file here | |
print("Beep! Pump is Off.") # Placeholder for actual sound functionality | |
# Main route | |
def index(): | |
global soil_moisture_data | |
city = crop_type = region = crop_age = irrigation_type = None | |
temperature = pressure = humidity = weather_desc = auto_weather_condition = None | |
soil_image_url = None | |
if request.method == 'POST': | |
city = request.form.get('city', '') | |
crop_type = request.form.get('crop_type', '') | |
region = request.form.get('region', '') | |
crop_age = request.form.get('crop_age', '') | |
irrigation_type = request.form.get('irrigation_type', '') | |
# Handle CSV file upload | |
if 'soil_moisture' in request.files: | |
soil_moisture_file = request.files['soil_moisture'] | |
if soil_moisture_file: | |
# Read CSV file | |
df = pd.read_csv(soil_moisture_file) | |
soil_moisture_data = df['Soil Moisture'].tolist() | |
# Handle soil image upload | |
soil_image_file = request.files.get('soil_image') | |
if soil_image_file: | |
# Load and preprocess the image for prediction | |
image = Image.open(io.BytesIO(soil_image_file.read())) | |
image = image.resize((150, 150)) | |
image = np.array(image) / 255.0 | |
if image.shape[-1] == 4: | |
image = image[..., :3] | |
image = np.expand_dims(image, axis=0) | |
# Predict the soil type | |
soil_pred = soil_model.predict(image) | |
soil_label = soil_labels[np.argmax(soil_pred)] | |
soil_type_for_pump = map_soil_to_pump_model(soil_label) | |
else: | |
soil_type_for_pump = request.form.get('soil_type') | |
if city: | |
temperature, pressure, humidity, weather_desc = get_weather(city) | |
auto_weather_condition = "NORMAL" # Default weather condition | |
if weather_desc: | |
if 'sunny' in weather_desc.lower(): | |
auto_weather_condition = 'SUNNY' | |
elif 'rain' in weather_desc.lower(): | |
auto_weather_condition = 'RAINY' | |
elif 'wind' in weather_desc.lower(): | |
auto_weather_condition = 'WINDY' | |
if 'predict' in request.form: | |
# Start a thread for predictions | |
threading.Thread(target=run_predictions, args=( | |
crop_type, soil_type_for_pump, region, temperature, pressure, humidity, crop_age, irrigation_type, auto_weather_condition)).start() | |
return redirect(url_for('predict')) | |
return render_template('index.html', temperature=temperature, pressure=pressure, | |
humidity=humidity, weather_desc=weather_desc, crop_types=crop_types, | |
regions=regions, irrigation_types=irrigation_types, soil_types=soil_types, | |
crop_type=crop_type, region=region, crop_age=crop_age, | |
irrigation_type=irrigation_type, city=city, soil_image_url=soil_image_url) | |
# Prediction route | |
def predict(): | |
global pump_status, graph_data | |
return render_template('predict.html', pump_status=pump_status, graph_data=graph_data) | |
# Update graph data every second | |
def update_graph(): | |
global graph_data | |
return jsonify(graph_data) | |
# Update pump status every second | |
def update_pump_status(): | |
global pump_status | |
return jsonify({'pump_status': pump_status}) | |
if __name__ == '__main__': | |
app.run(debug=True,port=5700,host='0.0.0.0') | |