import gradio as gr from typing import Dict import pandas as pd # from src.application.services import InterviewAnalyzer # from src.infrastructure.llm import LangchainService # from src.infrastructure.emotion import DeepFaceService # from src.infrastructure.speech import GoogleSpeechService # class GradioInterface: # def __init__(self): # # Initialize services # self.emotion_service = DeepFaceService() # self.speech_service = GoogleSpeechService() # self.llm_service = LangchainService() # # # Initialize analyzer # self.analyzer = InterviewAnalyzer( # emotion_service=self.emotion_service, # speech_service=self.speech_service, # llm_service=self.llm_service, # ) # # def create_interface(self) -> gr.Interface: # def process_submission( # video_file: str, resume_file: str, job_requirements: str # ) -> Dict: # # Implementation for processing submission # pass # # # Create Gradio interface # interface = gr.Interface( # fn=process_submission, # inputs=[ # gr.Video(label="Interview Recording"), # gr.File(label="Resume"), # gr.Textbox(label="Job Requirements", lines=5), # ], # outputs=gr.JSON(label="Analysis Results"), # title="HR Interview Analysis System", # description="Upload interview recording and resume to analyze candidate performance", # ) # # return interface # Testing to setup the simple interface class GradioInterface: def __init__(self): # DataFrame to List All Users' Feedbacks self.candidate_feedback = pd.DataFrame(columns=["Name", "Score", "Feedback"]) def validate_file_format(self, file_path: str, valid_extensions: list) -> bool: return isinstance(file_path, str) and any( file_path.endswith(ext) for ext in valid_extensions ) def process_video(self, video_path: str) -> str: # Process transcript from the video return "### Transcript\nExample of transcript of the interview video." def process_resume(self, resume_path: str) -> str: # Resume Parsing return "### Resume Analysis\n- **Skills**: NLP, Machine Learning, Computer Vision\n- **Experience**: 5 years." def analyze_emotions(self, video_path: str) -> str: # Emotion Analysis return "### Emotion Analysis\n- **Overall Emotion**: Positive\n- **Details**: Candidate displayed confidence and engagement." def get_feedback(self, name: str, score: int, feedback: str) -> pd.DataFrame: return pd.DataFrame({"Name": [name], "Score": [score], "Feedback": [feedback]}) def save_report(self): # Save report report_path = "report_path.docx" with open(report_path, "w") as f: # Pass fields to include in report here f.write("Example report") return report_path def create_interface(self) -> gr.Blocks: def process_submission( video_path, resume_path, interview_questions, job_requirements ): # Validate inputs and formats if not video_path: return ( "Please upload an interview video.", None, None, self.candidate_feedback, ) if not resume_path: return ( "Please upload a resume (PDF).", None, None, self.candidate_feedback, ) if not interview_questions: return ( "Please provide interview questions.", None, None, self.candidate_feedback, ) if not job_requirements: return ( "Please provide job requirements.", None, None, self.candidate_feedback, ) if not self.validate_file_format(video_path, [".mp4", ".avi", ".mkv"]): return "Invalid video format.", None, None, self.candidate_feedback if not self.validate_file_format(resume_path, [".pdf"]): return ( "Please submit resume in PDF format.", None, None, self.candidate_feedback, ) # Mock outputs for this submission video_transcript = self.process_video(video_path) emotion_analysis = self.analyze_emotions(video_path) resume_analysis = self.process_resume(resume_path) # Example of Feedback feedback_list = self.get_feedback( name="Johnson", score=88, feedback="Outstanding technical and soft skills.", ) # Append the new candidate feedback to the DataFrame self.candidate_feedback = pd.concat( [self.candidate_feedback, feedback_list], ignore_index=True ) # Return both the individual result and the list result return ( video_transcript, emotion_analysis, resume_analysis, self.candidate_feedback, ) # Build the interface using Blocks with gr.Blocks() as demo: gr.Markdown("## HR Interview Analysis System") # Inputs section with gr.Row(): video_input = gr.Video(label="Upload Interview Video") resume_input = gr.File(label="Upload Resume (PDF)") with gr.Row(): question_input = gr.Textbox( label="Interview Questions", lines=5, placeholder="Enter the interview question here", ) requirements_input = gr.Textbox( label="Job Requirements", lines=5, placeholder="Enter the job requirements here", ) submit_button = gr.Button("Submit") with gr.Tabs(): with gr.Tab("Result"): transcript_output = gr.Markdown(label="Video Transcript") emotion_output = gr.Markdown(label="Emotion Analysis") resume_output = gr.Markdown(label="Resume Analysis") with gr.Tab("List of Candidates"): feedback_output = gr.Dataframe( label="Candidate Feedback Lists", interactive=False ) save_button = gr.Button("Save Report") save_button.click( fn=self.save_report, inputs=[], outputs=gr.File(label="Download Report"), ) # Connect the button to the function submit_button.click( fn=process_submission, inputs=[video_input, resume_input, question_input, requirements_input], outputs=[ transcript_output, emotion_output, resume_output, feedback_output, ], ) return demo def launch_app(): print(gr.__version__) app = GradioInterface() interface = app.create_interface() interface.launch() if __name__ == "__main__": launch_app()