import asyncio import json import os import logging from typing import List, Dict, Any from pydantic import BaseModel, ValidationError from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer # Ensure vaderSentiment is installed try: from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer except ModuleNotFoundError: import subprocess import sys subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"]) from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer # Ensure nltk is installed and download required data try: import nltk from nltk.tokenize import word_tokenize nltk.download('punkt', quiet=True) except ImportError: import subprocess import sys subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"]) import nltk from nltk.tokenize import word_tokenize nltk.download('punkt', quiet=True) # Import perspectives from perspectives import ( NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective, NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective, MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective ) # Load environment variables from dotenv import load_dotenv load_dotenv() azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY') azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT') # Configuration management using pydantic class Config(BaseModel): real_time_data_sources: List[str] sensitive_keywords: List[str] # Initialize configuration config = Config( real_time_data_sources=["https://api.example.com/data"], sensitive_keywords=["password", "ssn"] ) # Memory management memory = [] # Sentiment analysis analyzer = SentimentIntensityAnalyzer() # Dependency injection class DependencyInjector: def __init__(self): self.dependencies = {} def register(self, name, dependency): self.dependencies[name] = dependency def get(self, name): return self.dependencies.get(name) injector = DependencyInjector() injector.register("config", config) injector.register("analyzer", analyzer) # Error handling and logging logging.basicConfig(level=logging.INFO) def handle_error(e): logging.error(f"Error: {e}") # Functions to implement async def llm_should_continue() -> bool: # Placeholder logic to determine if the goal is achieved return False async def llm_get_next_action() -> str: # Placeholder logic to get the next action return "next_action" async def execute_action(action: str): # Placeholder logic to execute an action logging.info(f"Executing action: {action}") async def goal_achieved() -> bool: # Placeholder logic to check if the goal is achieved return False async def run(): while not await goal_achieved(): action = await llm_get_next_action() await execute_action(action) def process_command(command: str): # Placeholder logic to process a command logging.info(f"Processing command: {command}") def analyze_sentiment(text: str) -> Dict[str, float]: return analyzer.polarity_scores(text) def classify_emotion(sentiment_score: Dict[str, float]) -> str: # Placeholder logic to classify emotion based on sentiment scores return "neutral" def correlate_emotion_with_perspective(emotion: str) -> str: # Placeholder logic to correlate emotion with perspectives return "HumanIntuitionPerspective" def handle_whitespace(text: str) -> str: return text.strip() def determine_next_action(memory: List[Dict[str, Any]]) -> str: # Placeholder logic to determine the next action based on memory return "next_action" def generate_response(question: str) -> str: # Placeholder logic to generate a response to a question return "response" async def fetch_real_time_data(source_url: str) -> Dict[str, Any]: # Placeholder logic to fetch real-time data return {"data": "real_time_data"} def save_response(response: str): # Placeholder logic to save the generated response logging.info(f"Response saved: {response}") def backup_response(response: str): # Placeholder logic to backup the generated response logging.info(f"Response backed up: {response}") def handle_voice_input(): # Placeholder for handling voice input pass def handle_image_input(image_path: str): # Placeholder for handling image input pass def handle_question(question: str): # Placeholder logic to handle a question and apply functions pass def apply_function(function: str): # Placeholder logic to apply a given function pass def analyze_element_interactions(element_name1: str, element_name2: str): # Placeholder logic to analyze interactions between two elements pass # Setup Logging def setup_logging(config): if config.get('logging_enabled', True): log_level = config.get('log_level', 'DEBUG').upper() numeric_level = getattr(logging, log_level, logging.DEBUG) logging.basicConfig( filename='universal_reasoning.log', level=numeric_level, format='%(asctime)s - %(levelname)s - %(message)s' ) else: logging.disable(logging.CRITICAL) # Load JSON configuration def load_json_config(file_path): if not os.path.exists(file_path): logging.error(f"Configuration file '{file_path}' not found.") return {} try: with open(file_path, 'r') as file: config = json.load(file) logging.info(f"Configuration loaded from '{file_path}'.") return config except json.JSONDecodeError as e: logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}") return {} # Initialize NLP (basic tokenization) def analyze_question(question): tokens = word_tokenize(question) logging.debug(f"Question tokens: {tokens}") return tokens # Define the Element class class Element: def __init__(self, name, symbol, representation, properties, interactions, defense_ability): self.name = name self.symbol = symbol self.representation = representation self.properties = properties self.interactions = interactions self.defense_ability = defense_ability def execute_defense_function(self): message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}" logging.info(message) return message # Define the CustomRecognizer class class CustomRecognizer: def recognize(self, question): # Simple keyword-based recognizer for demonstration purposes if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]): return RecognizerResult(question) return RecognizerResult(None) def get_top_intent(self, recognizer_result): if recognizer_result.text: return "ElementDefense" else: return "None" class RecognizerResult: def __init__(self, text): self.text = text # Universal Reasoning Aggregator class UniversalReasoning: def __init__(self, config): self.config = config self.perspectives = self.initialize_perspectives() self.elements = self.initialize_elements() self.recognizer = CustomRecognizer() # Initialize the sentiment analyzer self.sentiment_analyzer = SentimentIntensityAnalyzer() def initialize_perspectives(self): perspective_names = self.config.get('enabled_perspectives', [ "newton", "davinci", "human_intuition", "neural_network", "quantum_computing", "resilient_kindness", "mathematical", "philosophical", "copilot", "bias_mitigation" ]) perspective_classes = { "newton": NewtonPerspective, "davinci": DaVinciPerspective, "human_intuition": HumanIntuitionPerspective, "neural_network": NeuralNetworkPerspective, "quantum_computing": QuantumComputingPerspective, "resilient_kindness": ResilientKindnessPerspective, "mathematical": MathematicalPerspective, "philosophical": PhilosophicalPerspective, "copilot": CopilotPerspective, "bias_mitigation": BiasMitigationPerspective } perspectives = [] for name in perspective_names: cls = perspective_classes.get(name.lower()) if cls: perspectives.append(cls(self.config)) logging.debug(f"Perspective '{name}' initialized.") else: logging.warning(f"Perspective '{name}' is not recognized and will be skipped.") return perspectives def initialize_elements(self): elements = [ Element( name="Hydrogen", symbol="H", representation="Lua", properties=["Simple", "Lightweight", "Versatile"], interactions=["Easily integrates with other languages and systems"], defense_ability="Evasion" ), # You can add more elements as needed Element( name="Diamond", symbol="D", representation="Kotlin", properties=["Modern", "Concise", "Safe"], interactions=["Used for Android development"], defense_ability="Adaptability" ) ] return elements async def generate_response(self, question): responses = [] tasks = [] # Generate responses from perspectives concurrently for perspective in self.perspectives: if asyncio.iscoroutinefunction(perspective.generate_response): tasks.append(perspective.generate_response(question)) else: # Wrap synchronous functions in coroutine async def sync_wrapper(perspective, question): return perspective.generate_response(question) tasks.append(sync_wrapper(perspective, question)) perspective_results = await asyncio.gather(*tasks, return_exceptions=True) for perspective, result in zip(self.perspectives, perspective_results): if isinstance(result, Exception): logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}") else: responses.append(result) logging.debug(f"Response from {perspective.__class__.__name__}: {result}") # Handle element defense logic recognizer_result = self.recognizer.recognize(question) top_intent = self.recognizer.get_top_intent(recognizer_result) if top_intent == "ElementDefense": element_name = recognizer_result.text.strip() element = next( (el for el in self.elements if el.name.lower() in element_name.lower()), None ) if element: defense_message = element.execute_defense_function() responses.append(defense_message) else: logging.info(f"No matching element found for '{element_name}'") ethical_considerations = self.config.get( 'ethical_considerations', "Always act with transparency, fairness, and respect for privacy." ) responses.append(f"**Ethical Considerations:**\n{ethical_considerations}") formatted_response = "\n\n".join(responses) return formatted_response def save_response(self, response): if self.config.get('enable_response_saving', False): save_path = self.config.get('response_save_path', 'responses.txt') try: with open(save_path, 'a', encoding='utf-8') as file: file.write(response + '\n') logging.info(f"Response saved to '{save_path}'.") except Exception as e: logging.error(f"Error saving response to '{save_path}': {e}") def backup_response(self, response): if self.config.get('backup_responses', {}).get('enabled', False): backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt') try: with open(backup_path, 'a', encoding='utf-8') as file: file.write(response + '\n') logging.info(f"Response backed up to '{backup_path}'.") except Exception as e: logging.error(f"Error backing up response to '{backup_path}': {e}") # Example usage if __name__ == "__main__": try: config = load_json_config('config.json') # Add Azure OpenAI configurations to the config config['azure_openai_api_key'] = azure_openai_api_key config['azure_openai_endpoint'] = azure_openai_endpoint setup_logging(config) universal_reasoning = UniversalReasoning(config) question = "Tell me about Hydrogen and its defense mechanisms." response = asyncio.run(universal_reasoning.generate_response(question)) print(response) if response: universal_reasoning.save_response(response) universal_reasoning.backup_response(response) except ValidationError as e: handle_error(e)