import asyncio import logging from typing import List, Dict from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC from cryptography.hazmat.primitives.asymmetric import rsa, padding from cryptography.fernet import Fernet # Simplified Element System class Element: DEFENSE_ACTIONS = { "evasion": "evades threats through strategic ambiguity", "adaptability": "adapts to counter emerging challenges", "fortification": "strengthens defensive parameters" } def __init__(self, name: str, symbol: str, defense: str): self.name = name self.symbol = symbol self.defense = defense def defend(self): return f"{self.name} ({self.symbol}): {self.DEFENSE_ACTIONS[self.defense]}" # Core AI Perspectives class AIPerspective: PERSPECTIVES = { "newton": lambda q: f"Newtonian Analysis: Force = {len(q)*0.73:.2f}N", "davinci": lambda q: f"Creative Insight: {q[::-1]}", "quantum": lambda q: f"Quantum View: {hash(q)%100}% certainty" } def __init__(self, active_perspectives: List[str] = None): self.active = active_perspectives or list(self.PERSPECTIVES.keys()) async def analyze(self, question: str) -> List[str]: return [self.PERSPECTIVES[p](question) for p in self.active] # Quantum-Resistant Encryption Upgrade class QuantumSafeEncryptor: def __init__(self): self.private_key = rsa.generate_private_key(public_exponent=65537, key_size=4096) self.public_key = self.private_key.public_key() def hybrid_encrypt(self, data: str) -> bytes: # Generate symmetric key sym_key = Fernet.generate_key() fernet = Fernet(sym_key) # Encrypt data with symmetric encryption encrypted_data = fernet.encrypt(data.encode()) # Encrypt symmetric key with post-quantum algorithm encrypted_key = self.public_key.encrypt( sym_key, padding.OAEP( mgf=padding.MGF1(algorithm=hashes.SHA512()), algorithm=hashes.SHA512(), label=None ) ) return encrypted_key + b'||SEPARATOR||' + encrypted_data # Neural Architecture Search Integration class AINeuralOptimizer: def __init__(self): self.search_model = None async def optimize_pipeline(self, dataset): from autokeras import StructuredDataClassifier self.search_model = StructuredDataClassifier(max_trials=10) self.search_model.fit(x=dataset.features, y=dataset.labels, epochs=50) def generate_architecture(self): import tensorflow as tf best_model = self.search_model.export_model() return tf.keras.models.clone_model(best_model) # Holographic Knowledge Graph class HolographicKnowledge: def __init__(self, uri, user, password): from neo4j import GraphDatabase self.driver = GraphDatabase.driver(uri, auth=(user, password)) async def store_relationship(self, entity1, relationship, entity2): with self.driver.session() as session: session.write_transaction( self._create_relationship, entity1, relationship, entity2 ) @staticmethod def _create_relationship(tx, e1, rel, e2): query = ( "MERGE (a:Entity {name: $e1}) " "MERGE (b:Entity {name: $e2}) " f"MERGE (a)-[r:{rel}]->(b)" ) tx.run(query, e1=e1, e2=e2) # Self-Healing Mechanism class SelfHealingSystem: def __init__(self): from elasticsearch import Elasticsearch import sentry_sdk self.es = Elasticsearch() sentry_sdk.init(dsn="YOUR_SENTRY_DSN") async def monitor_system(self): import psutil while True: health = await self.check_health() if health['status'] != 'GREEN': self.heal_system(health) await asyncio.sleep(60) async def check_health(self): import psutil return { 'memory': psutil.virtual_memory().percent, 'cpu': psutil.cpu_percent(), 'response_time': self._measure_response_time() } def heal_system(self, health): if health['memory'] > 90: self._clean_memory() if health['response_time'] > 5000: self._scale_out() def _measure_response_time(self): # Implement response time measurement return 100 # Placeholder value def _clean_memory(self): # Implement memory cleaning pass def _scale_out(self): # Implement scaling out pass # Temporal Analysis Engine class TemporalProphet: def __init__(self): from prophet import Prophet self.models = {} async def analyze_temporal_patterns(self, data): model = Prophet(interval_width=0.95) model.fit(data) future = model.make_future_dataframe(periods=365) forecast = model.predict(future) return forecast def detect_anomalies(self, forecast): return forecast[ (forecast['yhat_lower'] > forecast['cap']) | (forecast['yhat_upper'] < forecast['floor']) ] # Unified System class AISystem: def __init__(self): self.elements = [ Element("Hydrogen", "H", "evasion"), Element("Carbon", "C", "adaptability") ] self.ai = AIPerspective() self.security = QuantumSafeEncryptor() self.self_healing = SelfHealingSystem() self.temporal_analysis = TemporalProphet() logging.basicConfig(level=logging.INFO) async def process_query(self, question: str) -> Dict: try: # AI Analysis perspectives = await self.ai.analyze(question) # Element Defense defenses = [e.defend() for e in self.elements if e.name.lower() in question.lower()] return { "perspectives": perspectives, "defenses": defenses, "encrypted": self.security.hybrid_encrypt(question) } except Exception as e: logging.error(f"Processing error: {e}") return {"error": str(e)} # Example Usage async def main(): system = AISystem() response = await system.process_query("How does Hydrogen defend?") print("AI Response:", response) if __name__ == "__main__": asyncio.run(main())