Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,254 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import logging
|
4 |
-
from datetime import datetime
|
5 |
-
from collections import defaultdict
|
6 |
-
from typing import Dict, List, Any, Optional
|
7 |
-
import numpy as np
|
8 |
-
from sklearn.ensemble import IsolationForest
|
9 |
-
import openai
|
10 |
-
from dotenv import load_dotenv
|
11 |
-
|
12 |
-
load_dotenv()
|
13 |
-
|
14 |
-
logging.basicConfig(
|
15 |
-
level=logging.INFO,
|
16 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
17 |
-
handlers=[
|
18 |
-
logging.FileHandler("ai_system.log"),
|
19 |
-
logging.StreamHandler()
|
20 |
-
]
|
21 |
-
)
|
22 |
-
logger = logging.getLogger(__name__)
|
23 |
-
|
24 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
25 |
-
|
26 |
-
class MemoryStore:
|
27 |
-
def __init__(self, persistence_file: str = "memory_store.json"):
|
28 |
-
self.session_memories = defaultdict(list)
|
29 |
-
self.persistent_memories = []
|
30 |
-
self.persistence_file = persistence_file
|
31 |
-
self.recall_weights = defaultdict(float)
|
32 |
-
self.sentiment_history = []
|
33 |
-
self.load_memory()
|
34 |
-
|
35 |
-
def add_memory(self, key: str, content: Any, domain: str, sentiment: float = 0.0):
|
36 |
-
"""Store memories with contextual linking"""
|
37 |
-
memory = {
|
38 |
-
"content": content,
|
39 |
-
"timestamp": datetime.now().isoformat(),
|
40 |
-
"domain": domain,
|
41 |
-
"access_count": 0,
|
42 |
-
"sentiment": sentiment,
|
43 |
-
"associations": []
|
44 |
-
}
|
45 |
-
|
46 |
-
# Cross-domain linking
|
47 |
-
if self.persistent_memories:
|
48 |
-
last_memory = self.persistent_memories[-1]
|
49 |
-
memory["associations"] = self._find_associations(last_memory["content"], content)
|
50 |
-
|
51 |
-
self.session_memories[key].append(memory)
|
52 |
-
self.persistent_memories.append(memory)
|
53 |
-
self._update_recall_weight(key, boost=1.2)
|
54 |
-
self.prune_memories()
|
55 |
-
|
56 |
-
def recall(self, key: str, context: str = None) -> List[Any]:
|
57 |
-
"""Context-aware recall with adaptive weights"""
|
58 |
-
memories = [m for m in self.persistent_memories if key in m["content"]]
|
59 |
-
|
60 |
-
if context:
|
61 |
-
memories = self._contextual_filter(memories, context)
|
62 |
-
|
63 |
-
# Apply temporal decay and frequency weights
|
64 |
-
weights = [
|
65 |
-
self.recall_weights[key] *
|
66 |
-
(1 / (1 + self._days_since(m["timestamp"]))) *
|
67 |
-
(1 + m["access_count"] * 0.1)
|
68 |
-
for m in memories
|
69 |
-
]
|
70 |
-
|
71 |
-
return sorted(memories, key=lambda x: x["access_count"], reverse=True)[:10]
|
72 |
-
|
73 |
-
def _find_associations(self, existing: str, new: str) -> List[str]:
|
74 |
-
"""Semantic linking between concepts"""
|
75 |
-
# Placeholder for actual semantic similarity model
|
76 |
-
return list(set(existing.split()) & set(new.split()))
|
77 |
-
|
78 |
-
def _contextual_filter(self, memories: List[dict], context: str) -> List[dict]:
|
79 |
-
"""Filter memories based on contextual relevance"""
|
80 |
-
# Placeholder for actual contextual similarity model
|
81 |
-
return [m for m in memories if context.lower() in m["content"].lower()]
|
82 |
-
|
83 |
-
def _days_since(self, timestamp: str) -> float:
|
84 |
-
return (datetime.now() - datetime.fromisoformat(timestamp)).days
|
85 |
-
|
86 |
-
def _update_recall_weight(self, key: str, boost: float = 1.0):
|
87 |
-
self.recall_weights[key] = min(self.recall_weights[key] * boost, 5.0)
|
88 |
-
|
89 |
-
def prune_memories(self):
|
90 |
-
"""Modular pruning system with anomaly detection"""
|
91 |
-
# Remove less relevant memories using isolation forest
|
92 |
-
if len(self.persistent_memories) > 1000:
|
93 |
-
X = np.array([len(m["content"]) for m in self.persistent_memories]).reshape(-1,1)
|
94 |
-
clf = IsolationForest(contamination=0.1)
|
95 |
-
preds = clf.fit_predict(X)
|
96 |
-
self.persistent_memories = [m for m,p in zip(self.persistent_memories, preds) if p == 1]
|
97 |
-
|
98 |
-
def save_memory(self):
|
99 |
-
with open(self.persistence_file, "w") as f:
|
100 |
-
json.dump({
|
101 |
-
"persistent": self.persistent_memories,
|
102 |
-
"weights": self.recall_weights
|
103 |
-
}, f)
|
104 |
-
|
105 |
-
def load_memory(self):
|
106 |
-
try:
|
107 |
-
with open(self.persistence_file, "r") as f:
|
108 |
-
data = json.load(f)
|
109 |
-
self.persistent_memories = data.get("persistent", [])
|
110 |
-
self.recall_weights = defaultdict(float, data.get("weights", {}))
|
111 |
-
except FileNotFoundError:
|
112 |
-
pass
|
113 |
-
|
114 |
-
class SentientGPT:
|
115 |
-
def __init__(self):
|
116 |
-
self.memory = MemoryStore()
|
117 |
-
self.session_context = defaultdict(dict)
|
118 |
-
self.sentiment_window = []
|
119 |
-
self.engagement_history = []
|
120 |
-
|
121 |
-
def _track_engagement(self, response: str):
|
122 |
-
"""Track user engagement patterns"""
|
123 |
-
engagement = {
|
124 |
-
"timestamp": datetime.now(),
|
125 |
-
"response_length": len(response),
|
126 |
-
"complexity": self._calculate_complexity(response)
|
127 |
-
}
|
128 |
-
self.engagement_history.append(engagement)
|
129 |
-
|
130 |
-
if len(self.engagement_history) > 100:
|
131 |
-
self.engagement_history.pop(0)
|
132 |
-
|
133 |
-
def _calculate_complexity(self, text: str) -> float:
|
134 |
-
"""Calculate text complexity score"""
|
135 |
-
words = text.split()
|
136 |
-
unique_words = len(set(words))
|
137 |
-
return (unique_words / len(words)) if words else 0
|
138 |
-
|
139 |
-
def process_query(self, user_id: str, query: str) -> str:
|
140 |
-
"""Main processing pipeline"""
|
141 |
-
# Analyze sentiment
|
142 |
-
sentiment = self._analyze_sentiment(query)
|
143 |
-
self.sentiment_window.append(sentiment)
|
144 |
-
|
145 |
-
# Update context
|
146 |
-
context = self._update_context(user_id, query, sentiment)
|
147 |
-
|
148 |
-
# Generate response
|
149 |
-
response = self._generate_response(query, context, sentiment)
|
150 |
-
|
151 |
-
# Memory operations
|
152 |
-
self.memory.add_memory(
|
153 |
-
key=user_id,
|
154 |
-
content=query,
|
155 |
-
domain=self._detect_domain(query),
|
156 |
-
sentiment=sentiment
|
157 |
-
)
|
158 |
-
|
159 |
-
# Track engagement
|
160 |
-
self._track_engagement(response)
|
161 |
-
|
162 |
-
return response
|
163 |
-
|
164 |
-
def _analyze_sentiment(self, text: str) -> float:
|
165 |
-
"""Dynamic sentiment analysis with moving window"""
|
166 |
-
# Placeholder for actual sentiment analysis
|
167 |
-
positive_words = {"good", "great", "happy", "awesome"}
|
168 |
-
negative_words = {"bad", "terrible", "hate", "awful"}
|
169 |
-
words = text.lower().split()
|
170 |
-
score = (sum(1 for w in words if w in positive_words) -
|
171 |
-
sum(1 for w in words if w in negative_words)) / len(words)
|
172 |
-
|
173 |
-
# Apply moving window smoothing
|
174 |
-
if self.sentiment_window:
|
175 |
-
score = 0.7 * score + 0.3 * np.mean(self.sentiment_window[-5:])
|
176 |
-
|
177 |
-
return max(min(score, 1.0), -1.0)
|
178 |
-
|
179 |
-
def _detect_domain(self, query: str) -> str:
|
180 |
-
"""Cross-domain detection"""
|
181 |
-
domains = {
|
182 |
-
"technical": {"how", "build", "code", "create"},
|
183 |
-
"emotional": {"feel", "think", "believe", "opinion"},
|
184 |
-
"factual": {"what", "when", "where", "why"}
|
185 |
-
}
|
186 |
-
|
187 |
-
words = set(query.lower().split())
|
188 |
-
scores = {
|
189 |
-
domain: len(words & keywords)
|
190 |
-
for domain, keywords in domains.items()
|
191 |
-
}
|
192 |
-
|
193 |
-
return max(scores, key=scores.get)
|
194 |
-
|
195 |
-
def _update_context(self, user_id: str, query: str, sentiment: float) -> dict:
|
196 |
-
"""Maintain dynamic conversation context"""
|
197 |
-
context = self.session_context[user_id]
|
198 |
-
|
199 |
-
# Maintain last 5 interactions
|
200 |
-
context.setdefault("history", []).append(query)
|
201 |
-
if len(context["history"]) > 5:
|
202 |
-
context["history"].pop(0)
|
203 |
-
|
204 |
-
# Track sentiment trends
|
205 |
-
context["sentiment"] = 0.8 * context.get("sentiment", 0) + 0.2 * sentiment
|
206 |
-
|
207 |
-
return context
|
208 |
-
|
209 |
-
def _generate_response(self, query: str, context: dict, sentiment: float) -> str:
|
210 |
-
"""Generate response with contextual awareness"""
|
211 |
-
# Retrieve relevant memories
|
212 |
-
memories = self.memory.recall(
|
213 |
-
key=self._detect_domain(query),
|
214 |
-
context=query
|
215 |
-
)
|
216 |
-
|
217 |
-
# Build prompt with context
|
218 |
-
prompt = f"Context: {context}\nMemories: {memories[:3]}\nQuery: {query}"
|
219 |
-
|
220 |
-
try:
|
221 |
-
response = openai.ChatCompletion.create(
|
222 |
-
model="gpt-3.5-turbo",
|
223 |
-
messages=[
|
224 |
-
{"role": "system", "content": prompt},
|
225 |
-
{"role": "user", "content": query}
|
226 |
-
]
|
227 |
-
).choices[0].message['content']
|
228 |
-
|
229 |
-
# Adjust response based on sentiment
|
230 |
-
if sentiment < -0.5:
|
231 |
-
response = f"I understand this might be frustrating. {response}"
|
232 |
-
elif sentiment > 0.5:
|
233 |
-
response = f"Great to hear! {response}"
|
234 |
-
|
235 |
-
except Exception as e:
|
236 |
-
logger.error(f"API Error: {e}")
|
237 |
-
response = "I'm having trouble processing that request right now."
|
238 |
-
|
239 |
-
return response
|
240 |
-
|
241 |
-
# ====================
|
242 |
-
# Usage Example
|
243 |
-
# ====================
|
244 |
-
if __name__ == "__main__":
|
245 |
-
bot = SentientGPT()
|
246 |
-
|
247 |
-
while True:
|
248 |
-
query = input("User: ")
|
249 |
-
if query.lower() in ["exit", "quit"]:
|
250 |
-
break
|
251 |
-
|
252 |
-
response = bot.process_query("user123", query)
|
253 |
-
print(f"AI: {response}")
|
254 |
-
bot.memory.save_memory()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|