Update app.py
Browse files
app.py
CHANGED
|
@@ -1,254 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import json
|
| 3 |
-
import logging
|
| 4 |
-
from datetime import datetime
|
| 5 |
-
from collections import defaultdict
|
| 6 |
-
from typing import Dict, List, Any, Optional
|
| 7 |
-
import numpy as np
|
| 8 |
-
from sklearn.ensemble import IsolationForest
|
| 9 |
-
import openai
|
| 10 |
-
from dotenv import load_dotenv
|
| 11 |
-
|
| 12 |
-
load_dotenv()
|
| 13 |
-
|
| 14 |
-
logging.basicConfig(
|
| 15 |
-
level=logging.INFO,
|
| 16 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 17 |
-
handlers=[
|
| 18 |
-
logging.FileHandler("ai_system.log"),
|
| 19 |
-
logging.StreamHandler()
|
| 20 |
-
]
|
| 21 |
-
)
|
| 22 |
-
logger = logging.getLogger(__name__)
|
| 23 |
-
|
| 24 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 25 |
-
|
| 26 |
-
class MemoryStore:
|
| 27 |
-
def __init__(self, persistence_file: str = "memory_store.json"):
|
| 28 |
-
self.session_memories = defaultdict(list)
|
| 29 |
-
self.persistent_memories = []
|
| 30 |
-
self.persistence_file = persistence_file
|
| 31 |
-
self.recall_weights = defaultdict(float)
|
| 32 |
-
self.sentiment_history = []
|
| 33 |
-
self.load_memory()
|
| 34 |
-
|
| 35 |
-
def add_memory(self, key: str, content: Any, domain: str, sentiment: float = 0.0):
|
| 36 |
-
"""Store memories with contextual linking"""
|
| 37 |
-
memory = {
|
| 38 |
-
"content": content,
|
| 39 |
-
"timestamp": datetime.now().isoformat(),
|
| 40 |
-
"domain": domain,
|
| 41 |
-
"access_count": 0,
|
| 42 |
-
"sentiment": sentiment,
|
| 43 |
-
"associations": []
|
| 44 |
-
}
|
| 45 |
-
|
| 46 |
-
# Cross-domain linking
|
| 47 |
-
if self.persistent_memories:
|
| 48 |
-
last_memory = self.persistent_memories[-1]
|
| 49 |
-
memory["associations"] = self._find_associations(last_memory["content"], content)
|
| 50 |
-
|
| 51 |
-
self.session_memories[key].append(memory)
|
| 52 |
-
self.persistent_memories.append(memory)
|
| 53 |
-
self._update_recall_weight(key, boost=1.2)
|
| 54 |
-
self.prune_memories()
|
| 55 |
-
|
| 56 |
-
def recall(self, key: str, context: str = None) -> List[Any]:
|
| 57 |
-
"""Context-aware recall with adaptive weights"""
|
| 58 |
-
memories = [m for m in self.persistent_memories if key in m["content"]]
|
| 59 |
-
|
| 60 |
-
if context:
|
| 61 |
-
memories = self._contextual_filter(memories, context)
|
| 62 |
-
|
| 63 |
-
# Apply temporal decay and frequency weights
|
| 64 |
-
weights = [
|
| 65 |
-
self.recall_weights[key] *
|
| 66 |
-
(1 / (1 + self._days_since(m["timestamp"]))) *
|
| 67 |
-
(1 + m["access_count"] * 0.1)
|
| 68 |
-
for m in memories
|
| 69 |
-
]
|
| 70 |
-
|
| 71 |
-
return sorted(memories, key=lambda x: x["access_count"], reverse=True)[:10]
|
| 72 |
-
|
| 73 |
-
def _find_associations(self, existing: str, new: str) -> List[str]:
|
| 74 |
-
"""Semantic linking between concepts"""
|
| 75 |
-
# Placeholder for actual semantic similarity model
|
| 76 |
-
return list(set(existing.split()) & set(new.split()))
|
| 77 |
-
|
| 78 |
-
def _contextual_filter(self, memories: List[dict], context: str) -> List[dict]:
|
| 79 |
-
"""Filter memories based on contextual relevance"""
|
| 80 |
-
# Placeholder for actual contextual similarity model
|
| 81 |
-
return [m for m in memories if context.lower() in m["content"].lower()]
|
| 82 |
-
|
| 83 |
-
def _days_since(self, timestamp: str) -> float:
|
| 84 |
-
return (datetime.now() - datetime.fromisoformat(timestamp)).days
|
| 85 |
-
|
| 86 |
-
def _update_recall_weight(self, key: str, boost: float = 1.0):
|
| 87 |
-
self.recall_weights[key] = min(self.recall_weights[key] * boost, 5.0)
|
| 88 |
-
|
| 89 |
-
def prune_memories(self):
|
| 90 |
-
"""Modular pruning system with anomaly detection"""
|
| 91 |
-
# Remove less relevant memories using isolation forest
|
| 92 |
-
if len(self.persistent_memories) > 1000:
|
| 93 |
-
X = np.array([len(m["content"]) for m in self.persistent_memories]).reshape(-1,1)
|
| 94 |
-
clf = IsolationForest(contamination=0.1)
|
| 95 |
-
preds = clf.fit_predict(X)
|
| 96 |
-
self.persistent_memories = [m for m,p in zip(self.persistent_memories, preds) if p == 1]
|
| 97 |
-
|
| 98 |
-
def save_memory(self):
|
| 99 |
-
with open(self.persistence_file, "w") as f:
|
| 100 |
-
json.dump({
|
| 101 |
-
"persistent": self.persistent_memories,
|
| 102 |
-
"weights": self.recall_weights
|
| 103 |
-
}, f)
|
| 104 |
-
|
| 105 |
-
def load_memory(self):
|
| 106 |
-
try:
|
| 107 |
-
with open(self.persistence_file, "r") as f:
|
| 108 |
-
data = json.load(f)
|
| 109 |
-
self.persistent_memories = data.get("persistent", [])
|
| 110 |
-
self.recall_weights = defaultdict(float, data.get("weights", {}))
|
| 111 |
-
except FileNotFoundError:
|
| 112 |
-
pass
|
| 113 |
-
|
| 114 |
-
class SentientGPT:
|
| 115 |
-
def __init__(self):
|
| 116 |
-
self.memory = MemoryStore()
|
| 117 |
-
self.session_context = defaultdict(dict)
|
| 118 |
-
self.sentiment_window = []
|
| 119 |
-
self.engagement_history = []
|
| 120 |
-
|
| 121 |
-
def _track_engagement(self, response: str):
|
| 122 |
-
"""Track user engagement patterns"""
|
| 123 |
-
engagement = {
|
| 124 |
-
"timestamp": datetime.now(),
|
| 125 |
-
"response_length": len(response),
|
| 126 |
-
"complexity": self._calculate_complexity(response)
|
| 127 |
-
}
|
| 128 |
-
self.engagement_history.append(engagement)
|
| 129 |
-
|
| 130 |
-
if len(self.engagement_history) > 100:
|
| 131 |
-
self.engagement_history.pop(0)
|
| 132 |
-
|
| 133 |
-
def _calculate_complexity(self, text: str) -> float:
|
| 134 |
-
"""Calculate text complexity score"""
|
| 135 |
-
words = text.split()
|
| 136 |
-
unique_words = len(set(words))
|
| 137 |
-
return (unique_words / len(words)) if words else 0
|
| 138 |
-
|
| 139 |
-
def process_query(self, user_id: str, query: str) -> str:
|
| 140 |
-
"""Main processing pipeline"""
|
| 141 |
-
# Analyze sentiment
|
| 142 |
-
sentiment = self._analyze_sentiment(query)
|
| 143 |
-
self.sentiment_window.append(sentiment)
|
| 144 |
-
|
| 145 |
-
# Update context
|
| 146 |
-
context = self._update_context(user_id, query, sentiment)
|
| 147 |
-
|
| 148 |
-
# Generate response
|
| 149 |
-
response = self._generate_response(query, context, sentiment)
|
| 150 |
-
|
| 151 |
-
# Memory operations
|
| 152 |
-
self.memory.add_memory(
|
| 153 |
-
key=user_id,
|
| 154 |
-
content=query,
|
| 155 |
-
domain=self._detect_domain(query),
|
| 156 |
-
sentiment=sentiment
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
-
# Track engagement
|
| 160 |
-
self._track_engagement(response)
|
| 161 |
-
|
| 162 |
-
return response
|
| 163 |
-
|
| 164 |
-
def _analyze_sentiment(self, text: str) -> float:
|
| 165 |
-
"""Dynamic sentiment analysis with moving window"""
|
| 166 |
-
# Placeholder for actual sentiment analysis
|
| 167 |
-
positive_words = {"good", "great", "happy", "awesome"}
|
| 168 |
-
negative_words = {"bad", "terrible", "hate", "awful"}
|
| 169 |
-
words = text.lower().split()
|
| 170 |
-
score = (sum(1 for w in words if w in positive_words) -
|
| 171 |
-
sum(1 for w in words if w in negative_words)) / len(words)
|
| 172 |
-
|
| 173 |
-
# Apply moving window smoothing
|
| 174 |
-
if self.sentiment_window:
|
| 175 |
-
score = 0.7 * score + 0.3 * np.mean(self.sentiment_window[-5:])
|
| 176 |
-
|
| 177 |
-
return max(min(score, 1.0), -1.0)
|
| 178 |
-
|
| 179 |
-
def _detect_domain(self, query: str) -> str:
|
| 180 |
-
"""Cross-domain detection"""
|
| 181 |
-
domains = {
|
| 182 |
-
"technical": {"how", "build", "code", "create"},
|
| 183 |
-
"emotional": {"feel", "think", "believe", "opinion"},
|
| 184 |
-
"factual": {"what", "when", "where", "why"}
|
| 185 |
-
}
|
| 186 |
-
|
| 187 |
-
words = set(query.lower().split())
|
| 188 |
-
scores = {
|
| 189 |
-
domain: len(words & keywords)
|
| 190 |
-
for domain, keywords in domains.items()
|
| 191 |
-
}
|
| 192 |
-
|
| 193 |
-
return max(scores, key=scores.get)
|
| 194 |
-
|
| 195 |
-
def _update_context(self, user_id: str, query: str, sentiment: float) -> dict:
|
| 196 |
-
"""Maintain dynamic conversation context"""
|
| 197 |
-
context = self.session_context[user_id]
|
| 198 |
-
|
| 199 |
-
# Maintain last 5 interactions
|
| 200 |
-
context.setdefault("history", []).append(query)
|
| 201 |
-
if len(context["history"]) > 5:
|
| 202 |
-
context["history"].pop(0)
|
| 203 |
-
|
| 204 |
-
# Track sentiment trends
|
| 205 |
-
context["sentiment"] = 0.8 * context.get("sentiment", 0) + 0.2 * sentiment
|
| 206 |
-
|
| 207 |
-
return context
|
| 208 |
-
|
| 209 |
-
def _generate_response(self, query: str, context: dict, sentiment: float) -> str:
|
| 210 |
-
"""Generate response with contextual awareness"""
|
| 211 |
-
# Retrieve relevant memories
|
| 212 |
-
memories = self.memory.recall(
|
| 213 |
-
key=self._detect_domain(query),
|
| 214 |
-
context=query
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
# Build prompt with context
|
| 218 |
-
prompt = f"Context: {context}\nMemories: {memories[:3]}\nQuery: {query}"
|
| 219 |
-
|
| 220 |
-
try:
|
| 221 |
-
response = openai.ChatCompletion.create(
|
| 222 |
-
model="gpt-3.5-turbo",
|
| 223 |
-
messages=[
|
| 224 |
-
{"role": "system", "content": prompt},
|
| 225 |
-
{"role": "user", "content": query}
|
| 226 |
-
]
|
| 227 |
-
).choices[0].message['content']
|
| 228 |
-
|
| 229 |
-
# Adjust response based on sentiment
|
| 230 |
-
if sentiment < -0.5:
|
| 231 |
-
response = f"I understand this might be frustrating. {response}"
|
| 232 |
-
elif sentiment > 0.5:
|
| 233 |
-
response = f"Great to hear! {response}"
|
| 234 |
-
|
| 235 |
-
except Exception as e:
|
| 236 |
-
logger.error(f"API Error: {e}")
|
| 237 |
-
response = "I'm having trouble processing that request right now."
|
| 238 |
-
|
| 239 |
-
return response
|
| 240 |
-
|
| 241 |
-
# ====================
|
| 242 |
-
# Usage Example
|
| 243 |
-
# ====================
|
| 244 |
-
if __name__ == "__main__":
|
| 245 |
-
bot = SentientGPT()
|
| 246 |
-
|
| 247 |
-
while True:
|
| 248 |
-
query = input("User: ")
|
| 249 |
-
if query.lower() in ["exit", "quit"]:
|
| 250 |
-
break
|
| 251 |
-
|
| 252 |
-
response = bot.process_query("user123", query)
|
| 253 |
-
print(f"AI: {response}")
|
| 254 |
-
bot.memory.save_memory()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|