Spaces:
Runtime error
Runtime error
File size: 9,144 Bytes
655f265 af5459f 655f265 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import json
import logging
from datetime import datetime
from collections import defaultdict
from typing import Dict, List, Any, Optional
import numpy as np
from sklearn.ensemble import IsolationForest
import openai
from dotenv import load_dotenv
load_dotenv()
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("ai_system.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
openai.api_key = os.getenv("OPENAI_API_KEY")
class MemoryStore:
def __init__(self, persistence_file: str = "memory_store.json"):
self.session_memories = defaultdict(list)
self.persistent_memories = []
self.persistence_file = persistence_file
self.recall_weights = defaultdict(float)
self.sentiment_history = []
self.load_memory()
def add_memory(self, key: str, content: Any, domain: str, sentiment: float = 0.0):
"""Store memories with contextual linking"""
memory = {
"content": content,
"timestamp": datetime.now().isoformat(),
"domain": domain,
"access_count": 0,
"sentiment": sentiment,
"associations": []
}
# Cross-domain linking
if self.persistent_memories:
last_memory = self.persistent_memories[-1]
memory["associations"] = self._find_associations(last_memory["content"], content)
self.session_memories[key].append(memory)
self.persistent_memories.append(memory)
self._update_recall_weight(key, boost=1.2)
self.prune_memories()
def recall(self, key: str, context: str = None) -> List[Any]:
"""Context-aware recall with adaptive weights"""
memories = [m for m in self.persistent_memories if key in m["content"]]
if context:
memories = self._contextual_filter(memories, context)
# Apply temporal decay and frequency weights
weights = [
self.recall_weights[key] *
(1 / (1 + self._days_since(m["timestamp"]))) *
(1 + m["access_count"] * 0.1)
for m in memories
]
return sorted(memories, key=lambda x: x["access_count"], reverse=True)[:10]
def _find_associations(self, existing: str, new: str) -> List[str]:
"""Semantic linking between concepts"""
# Placeholder for actual semantic similarity model
return list(set(existing.split()) & set(new.split()))
def _contextual_filter(self, memories: List[dict], context: str) -> List[dict]:
"""Filter memories based on contextual relevance"""
# Placeholder for actual contextual similarity model
return [m for m in memories if context.lower() in m["content"].lower()]
def _days_since(self, timestamp: str) -> float:
return (datetime.now() - datetime.fromisoformat(timestamp)).days
def _update_recall_weight(self, key: str, boost: float = 1.0):
self.recall_weights[key] = min(self.recall_weights[key] * boost, 5.0)
def prune_memories(self):
"""Modular pruning system with anomaly detection"""
# Remove less relevant memories using isolation forest
if len(self.persistent_memories) > 1000:
X = np.array([len(m["content"]) for m in self.persistent_memories]).reshape(-1,1)
clf = IsolationForest(contamination=0.1)
preds = clf.fit_predict(X)
self.persistent_memories = [m for m,p in zip(self.persistent_memories, preds) if p == 1]
def save_memory(self):
with open(self.persistence_file, "w") as f:
json.dump({
"persistent": self.persistent_memories,
"weights": self.recall_weights
}, f)
def load_memory(self):
try:
with open(self.persistence_file, "r") as f:
data = json.load(f)
self.persistent_memories = data.get("persistent", [])
self.recall_weights = defaultdict(float, data.get("weights", {}))
except FileNotFoundError:
pass
class SentientGPT:
def __init__(self):
self.memory = MemoryStore()
self.session_context = defaultdict(dict)
self.sentiment_window = []
self.engagement_history = []
def _track_engagement(self, response: str):
"""Track user engagement patterns"""
engagement = {
"timestamp": datetime.now(),
"response_length": len(response),
"complexity": self._calculate_complexity(response)
}
self.engagement_history.append(engagement)
if len(self.engagement_history) > 100:
self.engagement_history.pop(0)
def _calculate_complexity(self, text: str) -> float:
"""Calculate text complexity score"""
words = text.split()
unique_words = len(set(words))
return (unique_words / len(words)) if words else 0
def process_query(self, user_id: str, query: str) -> str:
"""Main processing pipeline"""
# Analyze sentiment
sentiment = self._analyze_sentiment(query)
self.sentiment_window.append(sentiment)
# Update context
context = self._update_context(user_id, query, sentiment)
# Generate response
response = self._generate_response(query, context, sentiment)
# Memory operations
self.memory.add_memory(
key=user_id,
content=query,
domain=self._detect_domain(query),
sentiment=sentiment
)
# Track engagement
self._track_engagement(response)
return response
def _analyze_sentiment(self, text: str) -> float:
"""Dynamic sentiment analysis with moving window"""
# Placeholder for actual sentiment analysis
positive_words = {"good", "great", "happy", "awesome"}
negative_words = {"bad", "terrible", "hate", "awful"}
words = text.lower().split()
score = (sum(1 for w in words if w in positive_words) -
sum(1 for w in words if w in negative_words)) / len(words)
# Apply moving window smoothing
if self.sentiment_window:
score = 0.7 * score + 0.3 * np.mean(self.sentiment_window[-5:])
return max(min(score, 1.0), -1.0)
def _detect_domain(self, query: str) -> str:
"""Cross-domain detection"""
domains = {
"technical": {"how", "build", "code", "create"},
"emotional": {"feel", "think", "believe", "opinion"},
"factual": {"what", "when", "where", "why"}
}
words = set(query.lower().split())
scores = {
domain: len(words & keywords)
for domain, keywords in domains.items()
}
return max(scores, key=scores.get)
def _update_context(self, user_id: str, query: str, sentiment: float) -> dict:
"""Maintain dynamic conversation context"""
context = self.session_context[user_id]
# Maintain last 5 interactions
context.setdefault("history", []).append(query)
if len(context["history"]) > 5:
context["history"].pop(0)
# Track sentiment trends
context["sentiment"] = 0.8 * context.get("sentiment", 0) + 0.2 * sentiment
return context
def _generate_response(self, query: str, context: dict, sentiment: float) -> str:
"""Generate response with contextual awareness"""
# Retrieve relevant memories
memories = self.memory.recall(
key=self._detect_domain(query),
context=query
)
# Build prompt with context
prompt = f"Context: {context}\nMemories: {memories[:3]}\nQuery: {query}"
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": query}
]
).choices[0].message['content']
# Adjust response based on sentiment
if sentiment < -0.5:
response = f"I understand this might be frustrating. {response}"
elif sentiment > 0.5:
response = f"Great to hear! {response}"
except Exception as e:
logger.error(f"API Error: {e}")
response = "I'm having trouble processing that request right now."
return response
# ====================
# Usage Example
# ====================
if __name__ == "__main__":
bot = SentientGPT()
while True:
query = input("User: ")
if query.lower() in ["exit", "quit"]:
break
response = bot.process_query("user123", query)
print(f"AI: {response}")
bot.memory.save_memory() |