Rahatara commited on
Commit
18120d9
·
verified ·
1 Parent(s): 17b50e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -24
app.py CHANGED
@@ -1,37 +1,50 @@
1
  import streamlit as st
2
- from PIL import Image
3
  import numpy as np
4
 
5
- def mock_encoder(image):
6
- """Simulates encoding an image into a latent representation."""
7
- return np.random.normal(0, 1, (1, 2)), np.random.normal(0, 1, (1, 2)), np.random.normal(0, 1, (1, 2))
8
-
9
- def mock_decoder(latent_representation):
10
- """Simulates decoding a latent representation back into an image."""
11
- return np.random.rand(28, 28, 1) * 255 # Random image for demonstration
 
 
 
 
 
 
 
12
 
13
- def latent_space_augmentation(image, encoder, decoder, noise_scale=0.1):
14
- z_mean, z_log_var, _ = encoder(image)
15
- epsilon = np.random.normal(size=z_mean.shape)
16
- z_augmented = z_mean + np.exp(0.5 * z_log_var) * epsilon * noise_scale
17
- augmented_image = decoder(z_augmented)
18
- return np.squeeze(augmented_image)
 
 
 
 
 
 
 
 
 
19
 
20
- st.title("VAE-based Image Augmentation Demo")
21
 
22
  uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
23
  if uploaded_image is not None:
24
- image = Image.open(uploaded_image).convert('L')
25
- image = image.resize((28, 28)) # Resizing for simplicity
26
  st.image(image, caption="Uploaded Image", use_column_width=True)
27
 
28
  if st.button("Augment Image"):
29
- # Convert PIL image to numpy array
30
- image_array = np.array(image) / 255.0 # Normalize the image
31
- image_array = image_array.reshape((28, 28, 1)) # Reshape for the mock encoder/decoder
32
 
33
- # Perform augmentation
34
- augmented_image = latent_space_augmentation(image_array, mock_encoder, mock_decoder)
35
 
36
- # Display the augmented image
37
- st.image(augmented_image, caption="Augmented Image", clamp=True, use_column_width=True)
 
1
  import streamlit as st
2
+ from PIL import Image, ImageEnhance, ImageOps
3
  import numpy as np
4
 
5
+ def apply_basic_augmentations(image):
6
+ """Applies basic augmentations such as rotation and color jitter."""
7
+ # Rotate the image
8
+ image = image.rotate(np.random.uniform(-30, 30))
9
+
10
+ # Apply color jitter
11
+ enhancer = ImageEnhance.Color(image)
12
+ image = enhancer.enhance(np.random.uniform(0.75, 1.25))
13
+
14
+ # Mirror image randomly
15
+ if np.random.rand() > 0.5:
16
+ image = ImageOps.mirror(image)
17
+
18
+ return image
19
 
20
+ def simulate_latent_space_noising(image, noise_scale=25):
21
+ """Simulates latent space manipulation by adding noise to the image."""
22
+ # Convert image to numpy array
23
+ image_array = np.array(image)
24
+
25
+ # Generate noise
26
+ noise = np.random.normal(0, noise_scale, image_array.shape)
27
+
28
+ # Add noise to image
29
+ noised_image_array = np.clip(image_array + noise, 0, 255).astype(np.uint8)
30
+
31
+ # Convert back to PIL image
32
+ noised_image = Image.fromarray(noised_image_array)
33
+
34
+ return noised_image
35
 
36
+ st.title("Hybrid Image Augmentation Demo")
37
 
38
  uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
39
  if uploaded_image is not None:
40
+ image = Image.open(uploaded_image)
 
41
  st.image(image, caption="Uploaded Image", use_column_width=True)
42
 
43
  if st.button("Augment Image"):
44
+ # Apply basic transformations
45
+ transformed_image = apply_basic_augmentations(image)
 
46
 
47
+ # Simulate VAE latent space manipulation by adding noise
48
+ augmented_image = simulate_latent_space_noising(transformed_image)
49
 
50
+ st.image(augmented_image, caption="Augmented Image", use_column_width=True)