import os import time from typing import List, Tuple, Optional import google.generativeai as genai import gradio as gr from PIL import Image print("google-generativeai:", genai.__version__) GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY") TITLE = """

🕹️ Gemini Against Gender Based Discrimination🔥

""" SUBTITLE = """

🎨Check the discrimination in communication

""" IMAGE_WIDTH = 512 def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None def preprocess_image(image: Image.Image) -> Image.Image: image_height = int(image.height * IMAGE_WIDTH / image.width) return image.resize((IMAGE_WIDTH, image_height)) def user(text_prompt: str, chatbot: List[Tuple[str, str]]): return "", chatbot + [["Analyze this text for gender-based discrimination, including implicit biases and stereotypes. Provide specific examples and explain why each example demonstrates bias. Also, suggest tips for how to address or mitigate these biases within the text.", None]] def bot( google_key: str, image_prompt: Optional[Image.Image], temperature: float, max_output_tokens: int, stop_sequences: str, top_k: int, top_p: float, chatbot: List[Tuple[str, str]] ): google_key = google_key or GOOGLE_API_KEY if not google_key: raise ValueError("GOOGLE_API_KEY is not set. Please set it up.") text_prompt = chatbot[-1][0] genai.configure(api_key=google_key) generation_config = genai.types.GenerationConfig( temperature=temperature, max_output_tokens=max_output_tokens, stop_sequences=preprocess_stop_sequences(stop_sequences), top_k=top_k, top_p=top_p, #instructions = "You are an expert stylist" ) model_name = "gemini-1.5-pro-latest" model = genai.GenerativeModel(model_name) inputs = [text_prompt] if image_prompt is None else [text_prompt, preprocess_image(image_prompt)] response = model.generate_content(inputs, stream=True, generation_config=generation_config) response.resolve() chatbot[-1][1] = "" for chunk in response: for i in range(0, len(chunk.text), 10): chatbot[-1][1] += chunk.text[i:i + 10] time.sleep(0.01) yield chatbot google_key_component = gr.Textbox( label="GOOGLE API KEY", type="password", placeholder="...", visible=GOOGLE_API_KEY is None ) image_prompt_component = gr.Image(type="pil", label="Image") chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False) text_prompt_component = gr.Textbox(placeholder="Write your text here", label="Ask me anything and press Enter") run_button_component = gr.Button("Run") temperature_component = gr.Slider(minimum=0, maximum=1.0, value=0.4, step=0.05, label="Temperature") max_output_tokens_component = gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Token limit") stop_sequences_component = gr.Textbox(label="Add stop sequence", placeholder="STOP, END") top_k_component = gr.Slider(minimum=1, maximum=40, value=32, step=1, label="Top-K") top_p_component = gr.Slider(minimum=0, maximum=1, value=1, step=0.01, label="Top-P") user_inputs = [text_prompt_component, chatbot_component] bot_inputs = [google_key_component, image_prompt_component, temperature_component, max_output_tokens_component, stop_sequences_component, top_k_component, top_p_component, chatbot_component] with gr.Blocks() as demo: gr.HTML(TITLE) gr.HTML(SUBTITLE) with gr.Column(): google_key_component.render() with gr.Row(): image_prompt_component.render() chatbot_component.render() text_prompt_component.render() run_button_component.render() with gr.Accordion("Parameters", open=False): temperature_component.render() max_output_tokens_component.render() stop_sequences_component.render() with gr.Accordion("Advanced", open=False): top_k_component.render() top_p_component.render() run_button_component.click(fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False).then(fn=bot, inputs=bot_inputs, outputs=[chatbot_component]) text_prompt_component.submit(fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False).then(fn=bot, inputs=bot_inputs, outputs=[chatbot_component]) demo.launch()